Сила лоренца

Задача 1

Сила тока в кольце радиусом R равна I. Определите индукцию магнитного поля в произвольной точке, лежащей на перпендикуляре, восставленном к плоскости кольца из его центра.

Решение. Пусть ОА — перпендикуляр к плоскости кольца, проходящий через его центр О (рис. 4.54, а). Определим магнитную индукцию в точке А, отстоящей на расстоянии d от контура (ОА = d). Расстояние элементов тока кольца от точки А обозначим через r.

Согласно закону Био—Савара—Лапласа (4.5.4) элемент тока создает в точке А магнитную индукцию

Для нахождения индукции магнитного поля, созданного кольцом с током, надо просуммировать векторы i, создаваемые отдельными элементами тока

Все векторы направлены вниз, поэтому их сумма находится простым сложением:

При нахождении суммы приходится складывать равные по модулю, но радиально расходящиеся векторы (рис. 4.54, б). Сумма таких векторов равна нулю:

Подставляя значения (4.11.4) и (4.11.5) в выражение (4Л1.3), получим:

Электромагнитная индукция: задачи с решением

Прежде чем решать задачи на электромагнитную индукцию, вспомните теорию и держите под рукой полезные формулы.

Не знаете, как подступиться к задаче? Держите универсальную памятку по решению абсолютно любых физических задач.

Задача №1 на закон электромагнитной индукции

Условие

Проводник, свитый в 5 витков, находится в магнитном поле. Магнитный  поток через поверхность витка изменяется по закону Фt=50-3t (Вб) . Определить направление и силу индукционного тока в проводнике, если его сопротивление равно 5 Ом.

Решение

Согласно основному закону электромагнитной индукции в проводнике возникает ЭДС индукции, величина которой определяется скоростью изменения магнитного потока, пронизывающего контур:

ε=-NdФdt

Индукционный ток в проводнике можно найти по закону Ома:

I=εR

Вычислим производную и найдем ток:

dФdt=d50-3tdt=-3

Тогда:

I=3NR=3·55=3 А

Уменьшение потока вызывает увеличение ЭДС, то есть направления потока и поля индукционного тока совпадают:

Ответ: 3 А.

Задача №2 на закон электромагнитной индукции

Условие

По катушке индуктивностью L=8 мкГн течет ток I=6 А. Определить среднее значение ЭДС самоиндукции, возникающей в контуре, если сила тока изменяется практически до нуля за время ∆t=5 мс.

Решение

По определению, магнитный поток равен:

Ф=L·I

ЭДС самоиндукции определим по закону Фарадея:

<ε>=∆Ф∆t=-L∆I∆t

Учитывая, что индуктивность неизменна, и магнитный поток изменяется только за счёт изменения силы тока до нуля (ΔI = I), можно записать:

<ε>=-LI∆t

Подставим числа и вычислим:

<ε>=-8·10-6·65·10-3=-9,6·10-3 В

Ответ: -9,6 мВ.

Задача №3 на закон электромагнитной индукции

Условие

Магнитный поток через контур проводника сопротивлением 0,04 Ом за 3 секунды изменился на 0,013 Вб. Найдите силу тока в проводнике, если изменение потока происходило равномерно.

Решение

В данном случае силу тока можно выразить через закон Ома с учетом закона электромагнитной индукции:

Ii=εiR=-∆Ф∆t1R

Подставляем значения и вычисляем:

Ii=,0133·,04=,11 А.

Ответ: 0,11 А.

Задача №4 на закон электромагнитной индукции

Условие

Прямой проводящий стержень длиной 40 см находится в однородном магнитном поле с индукцией 0,1 Тл. Концы стержня замкнуты гибким проводом, находящимся вне поля. Сопротивление всей цепи 0,5 Ом. Какая мощность потребуется для равномерного перемещения стержня перпендикулярно линиям магнитной индукции со скоростью 10 м/с?

Решение

Если стержень будет двигаться равномерно, магнитный поток через площадь, «заметаемую» стержнем за некоторое время, будет равен:

Ф=ВS=Blvt

При этом разность потенциалов на стержне будет равна ЭДС и, согласно закону электромагнитной индукции Фарадея:

U=dФdt=Blv

Искомая мощность будет равна мощности, выделяемой на сопротивлении:

P=U2R=Blv2R=,1·,4·102,5=,32 Вт

Ответ: 0,32 Вт.

Нужно больше задач на мощность? Читайте наш блог!

Задача №5 на закон электромагнитной индукции

Условие

В проволочное кольцо, присоединенное к баллистическому гальванометру, вставили прямой магнит. При этом по цепи прошел заряд q=50мкКл. Определить изменение магнитного потока через кольцо, если сопротивление цепи гальванометра R=10 Oм.

Решение

По закону Фарадея, ЭДС находится как отношения изменения магнитного потока ко времени, за которое оно произошло:

εi=∆Ф∆t∆Ф=εi·t

C другой стороны, по закону Ома, можно записать:

εi=IR

Ток, в свою очередь, равен отношению проходящего заряда ко времени:

I=∆Q∆t

C учетом всего этого выражения для ЭДС и потока можно переписать:

εi=R·∆Q∆t∆Ф=  R∆Q∆t∆t=R∆Q∆Ф=10·50·10-6=5·10-4 Вб

Ответ: 0,5 мВб.

Движение заряда в постоянных однородных электрическом и магнитном полях.[]

Ограничимся нерелятивистским случаем, когда v<<c{\displaystyle v<<c}, и поэтому его импульс p→=mv→;{\displaystyle {\vec {p}}=m{\vec {v}};} как мы увидим ниже, для этого необходимо, чтобы электрическое поле было мало по сравнению с магнитным.

Направление H→{\displaystyle {\vec {H}}} выберем за ось z{\displaystyle z}, а плоскость,проходящая через векторы H→{\displaystyle {\vec {H}}} и E→{\displaystyle {\vec {E}}}, за плоскость yz{\displaystyle yz}. Тогда уравнения движения

mv→˙=eE→+ecV→H→{\displaystyle m{\dot {\vec {v}}}=e{\vec {E}}+{\frac {e}{c}}}

запишутся в виде

mx¨=ecy˙H,{\displaystyle m{\ddot {x}}={\frac {e}{c}}{\dot {y}}H,}

my¨=eEy−ecx˙H,       (22.1){\displaystyle m{\ddot {y}}=eE_{y}-{\frac {e}{c}}{\dot {x}}H,~~~~~~~(22.1)}

mz¨=eEz{\displaystyle m{\ddot {z}}=eE_{z}}

Из третьего уравнения видно, что заряд движется равномерно-ускоренно, т.е.

z=eEzt2mt2+vzt.{\displaystyle z={\frac {eE_{z}t}{2m}}t^{2}+v_{0z}t.}

Умножая второе из уравнений (22.1) на i{\displaystyle i} и складывая с первым, находим

ddt(x˙+iy˙)+iω(x˙+iy)=iemEy{\displaystyle {\frac {d}{dt}}({\dot {x}}+i{\dot {y}})+i\omega ({\dot {x}}+i{y})=i{\frac {e}{m}}E_{y}}

Решением этого уравнения является

x˙+iy˙=ae−iωt+cEyH.{\displaystyle {\dot {x}}+i{\dot {y}}=ae^{-i\omega t}+{\frac {cE_{y}}{H}}.}

Отделяя действительную и мнимую часть

x˙=acos⁡ωt+cEyH ,   y˙=−asin⁡ωt.{\displaystyle {\dot {x}}=a\cos \omega t+{\frac {cE_{y}}{H}}~,~~~{\dot {y}}=-a\sin \omega t.}

Для средних значений

x→¯=eEyH ,   y→¯={\displaystyle {\overline {\vec {x}}}={\frac {eE_{y}}{H}}~,~~~{\overline {\vec {y}}}=0.}

Эту среднюю называют скоростью электрического дрейфа. В векторном виде её можно записать как

v¯=cE→H→H2.{\displaystyle {\overline {v}}={\frac {c}{H^{2}}}.}

Все это справедливо при выполнении условия

EyH<<1,{\displaystyle {\frac {E_{y}}{H}}<<1,}

Интегрируя еще раз и выбирая x,t,y={\displaystyle x,t,y=0}, получаем

x=aωsin⁡ωt+cEyHt{\displaystyle x={\frac {a}{\omega }}\sin \omega t+{\frac {cE_{y}}{H}}t}

y=aω(cos⁡ωt−1){\displaystyle y={\frac {a}{\omega }}(\cos \omega t-1)}

Если a=−cEyH{\displaystyle a=-{\frac {cE_{y}}{H}}},то

x=cEyωH(ωt−sin⁡ωt){\displaystyle x={\frac {cE_{y}}{\omega H}}(\omega t-\sin \omega t)}

Задача 2

Вдоль клина с углом α при основании проложены рельсы, расстояние между которыми l. По рельсам с трением (коэффициент трения равен μ) скользит проводящий брусок массой m. Какой ток I следует пропустить через брусок, чтобы он не скользил вниз, если вся система находится в магнитном поле, индукция которого направлена вертикально?

Решение. На брусок действуют сила тяжести , сила реакции рельсов , сила трения тp. При создании тока через брусок добавляется сила Ампера A (рис. 4.55). Брусок не будет скользить вниз, если

Проанализируйте самостоятельно, при какой силе тока брусок не будет скользить вверх.

В однородном электрическом.[]

Рассмотри движение заряда e{\displaystyle e} в однородном постоянном электрическом поле E→{\displaystyle {\vec {E}}}. Направление поля примем за ось x{\displaystyle x}. Движение будет, очевидно, проходить в одной плоскости, которую выберем за плоскость xy{\displaystyle xy}. Тогда уравнения движения

dp→dt=eE→+ecv→,H→.{\displaystyle {\frac {d{\vec {p}}}{dt}}=e{\vec {E}}+{\frac {e}{c}}.}

примут вид

p˙x=eE,  p˙y={\displaystyle {\dot {p}}_{x}=eE,~~{\dot {p}}_{y}=0}

откуда

px=eEx ,  py=p{\displaystyle p_{x}=eEx~,~~p_{y}=p_{0}}

Начало отсчета времени мы выбрали в тот момент, когда px=;{\displaystyle p_{x}=0;}, p{\displaystyle p_{0}} есть импульс частицы в этот момент.

Кинетическая энергия εkin=cm2c2+p2=ε2+(ceEt)2{\displaystyle \varepsilon _{kin}=c{\sqrt {m^{2}c^{2}+p^{2}}}={\sqrt {\varepsilon _{0}^{2}+(ceEt)^{2}}}}

Для скорости vx=x˙{\displaystyle v_{x}={\dot {x}}} имеем

dxdt=pxc2εkin2=c2eEtε2+(ceEt)2.{\displaystyle {\frac {dx}{dt}}={\frac {p_{x}c^{2}}{\varepsilon _{kin}^{2}}}={\frac {c^{2}eEt}{\sqrt {\varepsilon _{0}^{2}+(ceEt)^{2}}}}.}

Интегрируя, находим

x=1cEε2+(ceEt)2{\displaystyle x={\frac {1}{cE}}{\sqrt {\varepsilon _{0}^{2}+(ceEt)^{2}}}}

Для определения y{\displaystyle y} имеем

dydt=pyc2εkin=pc2ε2+(ceEt)2{\displaystyle {\frac {dy}{dt}}={\frac {p_{y}c^{2}}{\varepsilon _{kin}}}={\frac {p_{0}c^{2}}{\sqrt {\varepsilon _{0}^{2}+(ceEt)^{2}}}}}

откуда

y=pceEArshceEtε{\displaystyle y={\frac {p_{0}c}{eE}}Arsh{\frac {ceEt}{\varepsilon _{0}}}}

&nbsp
Находим уравнение траектории избавляясь от t{\displaystyle t}

x=εeEcheEypc.{\displaystyle x={\frac {\varepsilon _{0}}{eE}}ch{\frac {eEy}{p_{0}c}}.}

Таким образом, заряд движется в однородном электрическом поле по цепной линии.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. На рисунке показано, как установилась магнитная стрелка между полюсами двух одинаковых магнитов. Укажите полюса магнитов, обращённые к стрелке.

1) 1 — S, 2 — N
2) 1 — А, 2 — N
3) 1 — S, 2 — S
4) 1 — N, 2 — S

2. Па рисунке представлена картина линий магнитного поля от двух полосовых магнитов, полученная с помощью магнитной стрелки и железных опилок. Каким полюсам полосовых магнитов соответствуют области 1 и 2?

1) 1 — северному полюсу; 2 — южному
2) 1 — южному; 2 — северному полюсу
3) и 1, и 2 — северному полюсу
4) и 1, и 2 — южному полюсу

3. При прохождении электрического тока по проводнику магнитная стрелка, находящаяся рядом, расположена перпендикулярно проводнику. При изменении направления тока на противоположное. Стрелка

1) повернётся на 90°
2) повернётся на 180°
3) повернётся на 90° или на 180° в зависимости от значения силы тока
4) не изменит свое положение

4. Проводник, по которому протекает электрический ток, расположен перпендикулярно плоскости чертежа (см. рисунок). Расположение какой из магнитных стрелок, взаимодействующих с магнитным полем проводника с током, показано правильно?

1) 1
2) 2
3) 3
4) 4

5. Из проводника сделали кольцо и по нему пустили электрический ток. Ток направлен против часовой стрелки (см. рисунок). Как направлен вектор магнитной индукции в центре кольца?

1) вправо
2) влево
3) на нас из-за плоскости чертежа
4) от нас за плоскость чертежа

6. По катушке идёт электрический ток, направление которого показано на рисунке. При этом на концах железного сердечника катушки

1) образуются магнитные полюса — на конце 1 — северный полюс, на конце 2 — южный
2) образуются магнитные полюса — на конце 1 — южный полюс, на конце 2 — северный
3) скапливаются электрические заряды: на конце 1 — отрицательный заряд, на конце 2 — положительный
4) скапливаются электрические заряды: на конце 1 — положительный заряд, на конце 2 — отрицательный

7. Два параллельно расположенных проводника подключили параллельно к источнику тока.

Направление электрического тока и взаимодействие проводников верно изображены на рисунке

8. В однородном магнитном поле на проводник с током, расположенный перпендикулярно плоскости чертежа (см. рисунок), действует сила, направленная

9. Сила, действующая на проводник с током, который находится в магнитном поле между полюсами магнита направлена

10. На рисунке изображён проводник с током, помещённый в магнитное поле. Стрелка указывает направление тока в проводнике. Вектор магнитной индукции направлен перпендикулярно плоскости рисунка к нам. Как направлена сила, действующая на проводник с током?

11. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.

1) Вокруг неподвижных зарядов существует магнитное поле.
2) Вокруг неподвижных зарядов существует электростатическое поле.
3) Если разрезать магнит на две части, то у одной части будет только северный полюс, а у другой — только южный.
4) Магнитное поле существует вокруг движущихся зарядов.
5) Магнитная стрелка, находящаяся около проводника с током, всегда поворачивается вокруг своей оси.

12. Электрическая схема содержит источник тока, проводник АВ, ключ и реостат. Проводник АВ помещён между полюсами постоянного магнита (см. рисунок).

Используя рисунок, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) При перемещении ползунка реостата влево сила Ампера, действующая на проводник АВ, увеличится.
2) При замкнутом ключе проводник будет выталкиваться из области магнита вправо.
3) При замкнутом ключе электрический ток в проводнике имеет направление от точки В к точке А.
4) Магнитные линии поля постоянного магнита в области расположения проводника АВ направлены вертикально вниз.
5) Электрический ток, протекающий в проводнике АВ, создаёт однородное магнитное поле.

Часть 2

13. Участок проводника длиной 0,1 м находится в магнитном поле индукцией 50 мТл. Сила тока, протекающего по проводнику, 10 А. Какую работу совершает сила ампера при перемещении проводника на 8 см в направлении своего действия? Проводник расположен перпендикулярно линиям магнитной индукции.

Движение заряженной частицы в магнитном поле.

Для вывода общих закономерностей движения заряженной частицы в магнитном поле будем считать магнитное поле однородным, электрические поля на частицу не действуют. При этом учтем очевидное:

а) Если заряженная частица движется в магнитном поле вдоль силовой линии, сила Лоренца, действующая на неё, равна нулю

б) Если заряженная частица движется в магнитном поле со скоростью , перпендикулярно к вектору , то сила Лоренца, равная постоянна по модулю и перпендикулярна к траектории частицы.

Согласно второму закону Ньютона, эта сила создаёт центростремительное ускорение. Поэтому частица будет двигаться по окружности, радиус которой определяется из условия:

, , ,

период вращения частицы, т. е. время, затрачиваемое ею на один полный оборот,

в) Если скорость заряженной частицы направлена под углом к вектору то её движение можно представить в виде двух движений: 1) равномерного прямолинейного движения вдоль поля, 2) равномерного движения по окружности в плоскости перпендикулярной полю (Рис. 23).

В результате этих двух движений возникает движение по винтовой линии, ось которой параллельна вектору . Шаг винтовой линии:

Направление, в котором закручивается частица, зависит от знака её заряда.

Действие магнитного поля на движущиеся заряженные частицы. Действие магнитного поля на проводник с током означает, что магнитное поле действует на движущиеся электрические заряды. Найдем силу, действующую на электрический заряд q при его движении в однородном магнитном поле с индукцией . Сила тока I в проводнике связана с концентрацией n свободных заряженных частиц, скоростью их упорядоченного движения и площадью S поперечного сечения проводника следующим выражением:

,(1)

где q — заряд отдельной частицы.

.

Так как произведение nSl равно числу свободных заряженных частиц в проводнике длиной l

то сила, действующая со стороны магнитного поля на одну заряженную частицу, движущуюся со скоростью под углом к вектору индукции, равна

.(2)

Эту силу называют силой Лоренца. Направление вектора силы Лоренца определяется правилом левой руки, в нем за направление тока нужно брать направление вектора скорости положительного заряда (рис. 186). Для случая движения отрицательно заряженных частиц четыре пальца следует располагать противоположно направлению вектора скорости.

Движение заряженных частиц в магнитном поле. В однородном магнитном поле на заряженную частицу, движущуюся со скоростью перпендикулярно линиям индукции магнитного поля, действует сила , постоянная по модулю и направленная перпендикулярно вектору скорости (рис. 187).

В вакууме под действием силы Лоренца частица приобретает центростремительное ускорение

(3)

и движется по окружности. Радиус r окружности, по которой движется частица, определяется из условия

, .(4)

Период обращения частицы в однородном магнитном поле равен

.(5)

Последнее выражение показывает, что период обращения частицы в однородном магнитном поле при постоянной массе не зависит от скорости и радиуса r траектории ее движения. Этот факт используется, например, в ускорителе заряженных частиц — циклотроне.

Циклотрон. В этом ускорителе заряженные частицы — протоны, ядра атомов гелия — разгоняются переменным электрическим полем постоянной частоты в вакууме в зазоре между двумя металлическими электродами — дуантами. Дуанты находятся между полюсами постоянного электромагнита (рис. 188, а).

Под действием магнитного поля внутри дуантов заряженные частицы движутся по окружности. К моменту времени, когда они совершают половину оборота и подходят к зазору между дуантами, направление вектора напряженности электрического поля между дуантами изменяется на противоположное и частицы вновь испытывают ускорение. Каждую следующую половину оборота частицы пролетают по окружности все большего радиуса (рис. 188, б), но период их обращения остается неизменным. Поэтому для ускорения частиц на дуанты подается переменное напряжение с постоянным периодом. Ускорение частиц в циклотроне с постоянным периодом возможно лишь до значений скоростей, значительно меньших скорости света. С приближением скорости частицы к скорости света в вакууме, равной c = 300000 км/с, масса частицы возрастает, вследствие чего увеличивается период ее обращения в магнитном поле. Равенство периода обращения частицы и периода изменения электрического поля нарушается, ускорение прекращается.

топлива по сравнению с обычной тепловой электростанцией.

В заключение, по традиции, предлагаем Вашему вниманию шпаргалку по этой теме:

Отклонение электронов в магнитном поле

Из предыдущего анализа движения заряда известно, что процесс сопровождается воздействием на частицу, перемещающуюся в магнитном поле, силы Лоренца. Данная сила определяется величиной и знаком рассматриваемой частицы, а также зависит от быстроты ее перемещения и индукции магнитного поля. В итоге траектория, по которой движется заряд, изменяется. Опытным путем явление можно наблюдать с помощью системы магнитного поля и электронного луча осциллографа.

В ходе эксперимента необходимо выключить горизонтальную развертку луча и с помощью рукояток отрегулировать положение луча по вертикали и горизонтали. В результате последовательных манипуляций луч окажется направленным непосредственно в центральную область экрана. Следует расфокусировать образованное световое пятно, увеличивая яркость до максимально возможного значения. Если поместить рядом с прибором постоянный магнит, то можно наблюдать смещение пятна вбок, как изображено на рисунке:

Изменение положение пятна наблюдается в процессе приближения или удаления магнита от осциллографа. Таким образом, справедливо сделать вывод о том, что смещение пятна зависит от величины индукции магнитного поля. Если перевернуть магнит, то направление индукции изменится, а пятно на экране переместится в противоположную сторону.

Магнитное поле проводника с током

Электрический ток, протекающий по проводнику с током, создает в окружающем его пространстве магнитное поле. Чем больше ток, проходящий по проводнику, тем сильнее возникающее вокруг него магнитное поле.

Магнитные силовые линии этого поля располагаются по концентрическим окружностям, в центре которых находится проводник с током.

Направление линий магнитного поля вокруг проводника с током всегда находится в строгом соответствии с направлением тока, проходящего по проводнику.

Направление магнитных силовых линий можно определить по правилу буравчика: если поступательное движение буравчика (1) совпадает с направлением тока (2) в проводнике, то вращение его рукоятки укажет направление силовых линий (4) магнитного поля вокруг проводника.

При изменении направления тока линии магнитного поля также изменяют свое направление.

По мере удаления от проводника магнитные силовые линии располагаются реже. Следовательно, индукция магнитного поля уменьшается.

Направление тока в проводнике принято изображать точкой, если ток идет к нам, и крестиком, если ток направлен от нас.

Для получения сильных магнитных полей при небольших токах обычно увеличивают число проводников с током и выполняют их в виде ряда витков; такое устройство называют катушкой.

В проводнике, согнутом в виде витка, магнитные поля, образованные всеми участками этого проводника, будут внутри витка иметь одинаковое направление. Поэтому интенсивность магнитного поля внутри витка будет больше, чем вокруг прямолинейного проводника. При объединении витков в катушку магнитные поля, созданные отдельными витками, складываются. При этом концентрация силовых линий внутри катушки возрастает, т. е. магнитное поле внутри нее усиливается.

Чем больше ток, проходящий через катушку, и чем больше в ней витков, тем сильнее создаваемое катушкой магнитное поле. Магнитное поле снаружи катушки также складывается из магнитных полей отдельных витков, однако магнитные силовые линии располагаются не так густо, вследствие чего интенсивность магнитного поля там не столь велика, как внутри катушки.

Магнитное поле катушки с током имеет такую же форму, как и поле прямолинейного постоянного магнита: силовые магнитные линии выходят из одного конца катушки и входят в другой ее конец. Поэтому катушка с током представляет собой искусственный электрический магнит. Обычно для усиления магнитного поля внутрь катушки вставляют стальной сердечник; такую катушку называют электромагнитом.

Направление линий магнитной индукции катушки с током находят по правилу правой руки:

если мысленно обхватить катушку с током ладонью правой руки так, чтобы четыре пальца указывали направление тока в ее витках, тогда большой палец укажет направление вектора магнитной индукции.

Для определения направления линий магнитного поля, создаваемого витком или катушкой, можно использовать также правило буравчика:

если вращать ручку буравчика по направлению тока в витке или катушке, то поступательное движение буравчика укажет направление вектора магнитной индукции.

Электромагниты нашли чрезвычайно широкое применение в технике. Полярность электромагнита (направление магнитного поля) можно определить и с помощью правила правой руки.

Что такое сила Лоренца — определение, когда возникает, получение формулы

Известно, что электрический ток – это упорядоченное перемещение заряженных частиц. Установлено также, что во время движения в магнитном поле каждая из этих частиц подвергается действию силы. Для возникновении силы требуется, чтобы частица находилась в движении.

Сила Лоренца – это сила, которая действует на электрически заряженную частицу при её движении в магнитном поле. Её направление ортогонально плоскости, в которой лежат векторы скорости частицы и напряженности магнитного поля. Равнодействующая сил Лоренца и есть сила Ампера. Зная ее, можно вывести формулу для силы Лоренца.

Время, требуемое для прохождения частицей отрезка проводника, , где – длина отрезка, – скорость частицы. Суммарный заряд, перенесенный за это время через поперечное сечение проводника, . Подставив сюда значение времени из предыдущего равенства, имеем

                             (2)

В то же время , где – количество частиц, находящееся в рассматриваемом проводнике. При этом , где – заряд одной частицы. Подставив в формулу значение из (2), можно получить:

Таким образом,

Используя (1), предыдущее выражение можно записать как

После сокращений и переносов появляется формула для вычисления силы Лоренца

С учетом того, что формула записана для модуля силы, ее необходимо записать так:

                            (3)

Поскольку , то для вычисления модуля силы Лоренца неважно, куда направлена скорость, – по направлению силы тока или против, – и можно сказать, что – это угол, образуемый векторами скорости частицы и магнитной индукции. Запись формулы в векторном виде будет выглядеть следующим образом:

Запись формулы в векторном виде будет выглядеть следующим образом:

– это векторное произведение, результатом которого является вектор с модулем, равным .

Исходя из формулы (3), можно сделать вывод о том, что сила Лоренца является максимальной в случае перпендикулярности направлений электрического тока и магнитного поля, то есть при , и исчезать при их параллельности ().

Необходимо помнить, что для получения правильного количественного ответа – например, при решении задач, – следует пользоваться единицами системы СИ, в которой магнитная индукция измеряется в теслах (1 Тл = 1 кг·с−2·А−1), сила – в ньютонах (1 Н = 1 кг·м/с2), сила тока – в амперах, заряд в кулонах (1 Кл = 1 А·с), длина – в метрах, скорость – в м/с.

Применение силы Лоренца в технике

Кинескоп

Кинескоп, стоявший до недавнего времени, когда на смену ему пришел LCD-экран (плоский), в каждом телевизоре, не смог бы работать, не будь силы Лоренца. Для формирования на экране телевизионного растра из узкого потока электронов служат отклоняющие катушки, в которых создается линейно изменяющееся магнитное поле. Строчные катушки перемещают электронный луч слева направо и возвращают обратно, кадровые отвечают за вертикальное перемещение, двигая бегающий по горизонтали луч сверху вниз. Такой же принцип используется в осциллографах – приборах, служащих для изучения переменного электрического напряжения.

Масс-спектрограф

Масс-спектрограф – прибор, использующий зависимость радиуса вращения заряженной частицы от ее удельного заряда. Принцип его работы следующий:

Источник заряженных частиц, которые набирают скорость с помощью созданного искусственно электрического поля, с целью исключения влияния молекул воздуха помещается в вакуумную камеру. Частицы вылетают из источника и, пройдя по дуге окружности, ударяются в фотопластинку, оставляя на ней следы. В зависимости от удельного заряда меняется радиус траектории и, значит, точка удара. Этот радиус легко измерить, а зная его, можно вычислить массу частицы. С помощью масс-спектрографа, например, изучался состав лунного грунта.

Циклотрон

Независимость периода, а значит, и частоты вращения заряженной частицы от её скорости в присутствии магнитного поля используется в приборе, называемом циклотроном и предназначенном для разгона частиц до высоких скоростей. Циклотрон – это два полых металлических полуцилиндров – дуанта (по форме каждый из них напоминает латинскую букву D), помещенных прямыми сторонами навстречу друг другу на небольшом расстоянии.

Дуанты помещаются в постоянное однородное магнитное поле, а между ними создается переменное электрическое поле, частота которого равна частоте вращения частицы, определяемой напряженностью магнитного поля и удельным зарядом. Попадая дважды за период вращения (при переходе из одного дуанта в другой) под воздействие электрического поля, частица каждый раз ускоряется, увеличивая при этом радиус траектории, и в определенный момент, набрав нужную скорость, вылетает из прибора через отверстие. Таким способом можно разогнать протон до энергии в 20 МэВ (мегаэлектронвольт).

Магнетрон

Устройство, называемое магнетроном, который установлен в каждой микроволновой печи, – еще один представитель приборов, использующих силу Лоренца. Магнетрон служит для создания мощного СВЧ-поля, которое разогревает внутренний объем печи, куда помещается пища. Магниты, входящие в его состав, корректируют траекторию движения электронов внутри прибора.

Магнитное поле Земли

А в природе сила Лоренца играет крайне важную для человечества роль. Её наличие позволяет магнитному полю Земли защитить людей от смертоносного ионизирующего излучения космоса. Поле не дает возможности заряженным частицам бомбардировать поверхность планеты, заставляя их менять направление движения.

Магнитное поле: источники, свойства, характеристики и применение

Закон Кулона, определение и формула — электрические точечные заряды и их взаимодействие

Что такое ЭДС индукции и когда возникает?

Определение направления вектора магнитной индукции с помощью правила буравчика и правила правой руки

Что такое электрический ток простыми словами

Как подключить и настроить датчик движения для управления освещением: электрические схемы подключения и настройка датчика

Взаимодействие магнитов

Постоянные магниты – это тела, длительное время сохраняющие намагниченность, то есть создающие магнитное поле.

Основное свойство магнитов: притягивать тела из железа или его сплавов (например стали). Магниты бывают естественные (из магнитного железняка) и искусственные, представляющие собой намагниченные железные полосы. Области магнита, где его магнитные свойства выражены наиболее сильно, называют полюсами. У магнита два полюса: северный ​\( N \)​ и южный ​\( S \)​.

Важно!
Вне магнита магнитные линии выходят из северного полюса и входят в южный полюс. Разделить полюса магнита нельзя

Разделить полюса магнита нельзя.

Объяснил существование магнитного поля у постоянных магнитов Ампер. Согласно его гипотезе внутри молекул, из которых состоит магнит, циркулируют элементарные электрические токи. Если эти токи ориентированы определенным образом, то их действия складываются и тело проявляет магнитные свойства. Если эти токи расположены беспорядочно, то их действие взаимно компенсируется и тело не проявляет магнитных свойств.

Магниты взаимодействуют: одноименные магнитные полюса отталкиваются, разноименные – притягиваются.

Понравилась статья? Поделиться с друзьями:
Центр образования
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: