Строение металлов

Химические свойства металлов. легко отдавая при химических реакциях свои валентные электроны, типичные металлы являются энергичными восстановителями. - презентация

ХИМИЯ

§ 18.2. Общие химические свойства металлов

Атомы металлов сравнительно легко отдают валентные электроны и переходят в положительно заряженные ионы, т. е. окисляются. В этом, как вам известно, заключается главное общее свойство и атомов, и простых веществ — металлов.

Металлы в химических реакциях всегда восстановители. Восстановительная способность атомов простых веществ — металлов, образованных химическими элементами одного периода или одной главной подгруппы Периодической системы Д. И. Менделеева, изменяется закономерно (см. рис. 37).

Восстановительную активность металла в химических реакциях, которые протекают в водных растворах, отражает его положение в электрохимическом ряду напряжений металлов.

(Нижнюю строчку ряда следует рассматривать как продолжение предыдущей.)

Более точное название этого ряда — ряд стандартных электродных потенциалов металлов.

Что такое электродный потенциал? Каким образом составлен названный ряд? Как этим рядом пользоваться?

При погружении любого металла в раствор электролита на границе металл—раствор устанавливается равновесие:

В металле появляется избыток электронов, а раствор на границе заряжается положительно. Таким образом образуется двойной электрический слой и возникает разность потенциалов, называемая электродным потенциалом. Электродный потенциал каждого электрода зависит от природы металла, концентрации его ионов в растворе и температуры.

Абсолютное значение электродного потенциала непосредственно измерить нельзя. Вместе с тем не представляет труда измерение разности электродных потенциалов, которая возникает в системе, состоящей из двух пар металл—раствор. Условились определять электродные потенциалы металлов по отношению к стандартному водородному электроду, потенциал которого принят за нуль. Такой электрод состоит из специально приготовленной платиновой пластинки, которая погружена в раствор серной кислоты с концентрацией ионов водорода, равной 1 моль/л, и омывается струей газообразного водорода под давлением в 101,325 кПа при 25 °С.

Если пластинку любого металла, погруженного в раствор его соли с концентрацией ионов металла 1 моль/л, соединить со стандартным водородным электродом, то получится электрическая цепь (гальванический элемент), электродвижущую силу (ЭДС) которой легко измерить. Эту ЭДС и называют стандартным электродным потенциалом (Е°). Например:

    • Е°(К+/К) = -2,92 В,
      Е°(Аl3+/Аl) = -1,67 В,
      Е°(Fe2+/Fe) = -0,44 В,
      Е°(Cu2+/Cu) = +0,34 В,
      Е°(Ag+/Ag) = +0,80 В.

Металлы, расположенные в порядке возрастания алгебраических величин их стандартных электродных потенциалов, образуют хорошо известный вам электрохимический ряд напряжений металлов.

На основании этого ряда напряжений можно сделать следующие важные заключения о химической активности металлов в реакциях, протекающих в водных растворах при стандартных условиях (t = 25 °С, р = 1 атм):

  1. Чем левее стоит металл в этом ряду, тем более сильным восстановителем он является.
  2. Каждый металл способен вытеснять (восстанавливать) из солей в растворе те металлы, которые в ряду напряжений стоят после него (правее).
  3. Металлы, находящиеся в ряду напряжений левее водорода, способны вытеснять его из кислот в растворе.
  4. Металлы, являющиеся самыми сильными восстановителями (щелочные и щелочноземельные), в любых водных растворах взаимодействуют прежде всего с водой.

Восстановительная активность металла, определенная по электрохимическому ряду, не всегда соответствует положению его в Периодической системе. Это объясняется тем, что при определении положения металла в ряду напряжений учитывают не только энергию отрыва электронов от отдельных атомов, но и энергию, затрачиваемую на разрушение кристаллической решетки, а также энергию, выделяющуюся при гидратации ионов.

Например, литий более активен в водных растворах, чем натрий (хотя по положению в Периодической системе Na — более активный металл). Дело в том, что энергия гидратации ионов Li+ значительно больше, чем энергия гидратации ионов Na+, поэтому первый процесс является энергетически более выгодным.

Рассмотрев общие положения, характеризующие восстановительные свойства металлов, перейдем к конкретным химическим реакциям.

Общая характеристика металлов

Все химические элементы делятся на металлы и неметаллы. В основе такого деления лежит различие в строении атомов элементов.

Неметаллы в таблице Периодической системы Менделеева занимают правый верхний угол (желтые ячейки на рисунке внизу):

Все остальные, не желтые ячейки плюс водород и гелий — занимают металлы. Таким образом, неметаллы и металлы в Периодической таблице разделены условной диагональю бор-астат.

Химические элементы, расположенные в непосредственной близости от этой диагонали (алюминий, титан, галлий, германий, сурьма, теллур, астат), имеют двойственные свойства, реагируя в некоторых случаях, как металлы, а в других — как неметаллы.

Закономерности расположения элементов в периодах (слева-направо):

  • Радиус атома — уменьшается;
  • Заряд ядра — увеличивается;
  • Электроотрицательность — увеличивается;
  • Кол-во электронов на внешнем слое — увеличивается;
  • Прочность связи внешних электронов с ядром атома — увеличивается;
  • Способность отдавать электроны — уменьшается.

Исходя из вышеуказанных закономерностей, нетрудно догадаться, что металлы находятся в начале каждого периода (слева), а неметаллы — в конце (справа).

Атомы металлов:

  • как правило, на внешнем электронном слое имеют 1-3 электрона (4 электрона у Ge, Sn, Pb; 5 — у Sb, Bi; 6 — у Po);
  • имеют больший размер атома и меньший заряд его ядра, по сравнению с неметаллами своего периода;
  • имеют высокопрочную связь внешних электронов с ядром атома;
  • легко расстаются с валентными электронами, превращаясь в катионы.

При н.у. все металлы (за исключением ртути) являются твердыми веществами, обладающими прочной кристаллической решеткой, образованной за счет металлических связей. Между узлами кристаллической решетки находятся свободные электроны, которые могут переносить теплоту и проводить электрический ток. Поэтому, в отличие от неметаллов, металлы хорошо проводят тепло и обладают высокой электропроводностью.

Физические свойства металлов:

  • твердые вещества (кроме ртути);
  • обладают характерным металлическим блеском;
  • обладают высокой электро- и теплопроводностью;
  • обладают высокими механическими качествами: упругостью, пластичностью, прочностью.

Самыми мягкими металлами являются калий и натрий (их можно резать ножом), самый твердый металл — хром (царапает стекло).

Самый легкоплавкий металл ртуть (-38,9°C), самый тугоплавкий — вольфрам (3380°C).

Самая низкая плотность у лития (0,59 г/см3), самая высокая — у осмия (22,48 г/см3).

Еще одной характерной особенностью металлов является их способность намагничиваться:

  • ферромагнетики обладают высокой способностью намагничиваться даже под действием незначительного магнитного поля (железо, никель);
  • парамагнетики проявляются слабую способность к намагничиванию (алюминий, хром);
  • диамагнетики не намагничиваются (олово, медь).

Электронные оболочки атомов металлов

Атомы металлов имеют особенности в строении своих электронных оболочек, которые обусловливают их способность отдавать валентные электроны. Внешние электроны, находящиеся на самой высокой энергетической уровне, называются валентными электронами. Число валентных электронов определяется порядковым номером элемента в таблице Менделеева. У атомов металлов в основном степени окисления положительны, так как они легко теряют свои валентные электроны.

В электронной оболочке атомов металлов внутриных электронов достаточно много, и они образуют стабильные электронные конфигурации. Поэтому, чтобы достичь наиболее стабильного состояния, атомы металлов стремятся отдать свои валентные электроны и образовать положительный ион. Это объясняет их способность к донорству электронов в химических реакциях.

Кроме того, атомы металлов часто обладают большими размерами и слабыми силами притяжения между ядром и электронами. Это также способствует их отдаче валентных электронов, так как электроны слабо удерживаются ядром и могут легко двигаться по металлической решетке.

Таким образом, особенности электронных оболочек атомов металлов, а именно большое количество внутренних электронов и слабое взаимодействие с ядром, обуславливают их способность только отдавать валентные электроны и образовывать положительные ионы при взаимодействии с другими элементами.

Внутреннее строение и физические свойства металлов

Металлы — это простые вещества, атомы которых могут только отдавать электроны. Такая особенность металлов связана с тем, что на внешнем уровне этих атомов мало электронов (чаще всего от 1 до 3) или внешние электроны расположены далеко от ядра. Чем меньше электронов на внешнем уровне атома и чем дальше они расположены от ядра, — тем активнее металл (ярче выражены его металлические свойства).

Задание 8.1. Какой металл активнее:

Назовите химические элементы А, Б, В, Г.

Металлы и неметаллы в Периодической системе химических элементов Менделеева (ПСМ) разделяет линия, проведённая от бора к астату. Выше этой линии в главных подгруппах находятся неметаллы (см. урок 3). Остальные химические элементы — металлы.

Задание 8.2. Какие из следующих элементов относятся к металлам: кремний, свинец, сурьма, мышьяк, селен, хром, полоний?

Вопрос. Как можно объяснить тот факт, что кремний — неметалл, а свинец — металл, хотя число внешних электронов у них одинаково?

Существенной особенностью атомов металлов является их большой радиус и наличие слабо связанных с ядром валентных электронов. Для таких атомов величина энергии ионизации* невелика.

Часть валентных электронов металлов, отрываясь от атомов, становятся «свободными». «Свободные» электроны легко перемещаются между атомами и ионами металлов в кристалле, образуя «электронный газ» (рис. 28).

В последующий момент времени любой из «свободных» электронов может притянуться любым катионом, а любой атом металла может отдать электрон и превратиться в ион (эти процессы показаны на рис. 28 пунктирами).

Таким образом, внутреннее строение металла похоже на слоёный пирог, где положительно заряженные «слои» атомов и ионов металла чередуются с электронными «прослойками» и притягиваются к ним. Наилучшей моделью внутреннего строения металла является стопка стеклянных пластинок, смоченных водой: оторвать одну пластинку от другой очень трудно (металлы прочные), а сдвинуть одну пластинку относительно другой очень легко (металлы пластичные) (рис. 29).

Задание 8.3. Сделайте такую «модель» металла и убедитесь в этих свойствах.

Химическая связь, осуществляемая за счёт «свободных» электронов, называется металлической связью.

«Свободные» электроны обеспечивают также такие физические свойства металлов, как электро- и теплопроводность, пластичность (ковкость), а также металлический блеск.

Задание 8.4. Найдите дома металлические предметы.

Выполняя это задание, вы легко найдёте на кухне металлическую посуду: кастрюли, сковородки, вилки, ложки. Из металлов и их сплавов делают станки, самолёты, автомобили, тепловозы, инструменты. Без металлов невозможна современная цивилизация, так как электрические провода также делают из металлов — Cu и Al. Только металлы годятся для получения антенн для радио- и телеприёмников, из металлов делают и лучшие зеркала. При этом чаще используют не чистые металлы, а их смеси (твёрдые растворы) — СПЛАВЫ.

Топ вопросов за вчера в категории Химия

Химия 20.06.2023 14:08 2126 Сапалов Андрей

№1. Определить валентность элементов в веществах. SiH4. CrO3. H2S. CO2. CO. SO3. SO2. Fe2O3. FeO.

Ответов: 1

Химия 01.07.2023 02:03 765 Шкребец Макс

Составьте формулу соединений железа (III) с серой

Ответов: 2

Химия 18.05.2023 16:56 868 Амангелды Моля

Определить валентность: FeS, Al2S3, SCl2, SCl4, CO, CO2, Na3P, Ca3P2

Ответов: 2

Химия 04.07.2023 04:40 698 Кривич Алексей

Вопрос Верны ли следующие суждения об условиях протекания реакций ионного обмена? А. Если в раство

Ответов: 2

Химия 23.09.2023 10:29 580 Бороденко Сергей

Задание 1 (60 баллов). Заполните таблицу для следующих явлений: сгибание медной проволоки; таяние

Ответов: 1

Химия 22.02.2021 12:23 324 Федів Антон

Рассчитайте массовые доли элементов в оксиде углерода (IV) – углекислом газе При выполнении задани

Ответов: 2

Химия 18.05.2023 12:20 237 Мерзлякова Света

Тест «Вода» 1.Какое свойство воды указано неверно: 1) прозрачна 3) бесцветна 2) не имеет запаха 4)

Ответов: 3

Химия 28.09.2023 06:32 106 Леонтьев Никита

Из предложенного перечня выберите две пары веществ, которые при комнатной температуре реагируют друг

Ответов: 2

Химия 03.10.2023 07:21 338 Романова Анна

Будут ли верны следующие утверждения при решении задачи расчёта соотношения масс железа и хлора в мо

Ответов: 2

Химия 01.07.2023 19:18 487 Романова Катя

Вопрос Массовая доля углерода одинакова в двух веществах, формулы которыхC2H4CH4C6H6C2H6C5H10​

Ответов: 2

27.85. Химические свойства металлов

По своим химическим свойствам все металлы являются восстановителями, все они сравнительно легко отдают валентные электроны, переходят в положительно заряженные ионы, то есть окисляются. Восстановительную активность металла в химических реакциях, протекающих в водных растворах, отражает его положение в электрохимическом ряду напряжений металлов, или ряду стандартных электродных потенциалов металлов.

Чем левее стоит металл в ряду стандартных электродных потенциалов, тем более сильным восстановителем он является, самый сильный восстановитель — металлический литий, золото — самый слабый, и, наоборот, ион золото (III) — самый сильный окислитель, литий (I) — самый слабый.

Каждый металл способен восстанавливать из солей в растворе те металлы, которые стоят в ряду напряжений после него, например, железо может вытеснять медь из растворов ее солей. Однако следует помнить, что металлы щелочных и щелочно‒земельных металлов будут взаимодействовать непосредственно с водой.

Металлы, стоящее в ряду напряжений левее водорода, способны вытеснять его из растворов разбавленных кислот, при этом растворяться в них.

Восстановительная активность металла не всегда соответствует его положению в периодической системе, потому что при определении места металла в ряду учитывается не только его способность отдавать электроны, но и энергия, которая затрачивается на разрушение кристаллической решетки металла, а также энергия, затрачиваемая на гидратацию ионов.

Физические свойства металлов:

1. Плотность металлов:

Легкие: Al, Na, Mg,Sn, Ga

Тяжелые: Cu, Pb, Fe, Hg, Cd

2. Температура плавления:

Легкоплавкие (t

Тугоплавкие (t>1000C): W, Cr, Fe, Mo, Nb

3. Твердость:

Мягкие: Na, Pb, Ba, In, Cd

Твердые: Cr, Fe, Zn, Ag

4. Общие свойства металлов: твердая кристаллическая структура, у большинства – серый цвет, металлический блеск, электро- и теплопроводность, ковкость и пластичность.

Способы получение металлов:

1. Пирометаллургия

Карботермия (при высоких температурах):

FeO + C = Fe + CO

Fe3O4 + 4C = 3Fe + 4CO2

Гидротермия (восстановление водородом)

WO3 + 3H2 = W + 3H2O

Fe2O3 + 3H2 = 2Fe + 3H2O

Вакуумтермия (восстановление более активными металлами)

KCl + Na = NaCl + K

TiCl4 + 2Mg = Ti + 2MgCl2

3BaO + 2Al = Al2O3 + 3Ba

2. Гидрометаллургия (как правило в несколько стадий)

1) CuO + H2SO4 = CuSO4 + H2O

2) CuSO4 + Fe = FeSO4 + Cu

3. Электрометаллургия – электролиз расплавов и растворов(подробнее эта тема рассматривается на уроке – электролиз)

Na[AlF4]

  • 2Al2O3 = 4Al + 3O2
  • 2CuSO4 + 2H2O = 2Cu + O2 + 2H2SO4
  • KCl = K + Cl2
  • 4NaOH = 4Na + O2 + 2H2O

Химические свойства металлов:

Вещество

Металл и условие реакции

Пример

С ПРОСТЫМИ ВЕЩЕСТВАМИ

   

Галогены:

F2, Cl2, Br2, I2

Большинство металлов

Fe(Сr) + Г2 = 2FeГ3

НО: Fe(Cr) + I2 = FeI2

С кислородом

Li, Ca, Al, Fe и другие

4Li + O2 = 2Li2O

4Al+ 3O2 = 2Al2O3

3Fe + 2O2 = Fe3O4

Na, K

2Na + O2 = Na2O2 (пероксид натрия)

K + O2 = KO2 (супероксид калия)

 

C серой образуются сульфида

Металлы реагируют при нагревании

2Na + S = Na2S

Fe + S = FeS

Cr + S = CrS

2Al + 3S = Al2S3

С азотом образуются нитриды

Реагируют при нагревании

6Li + N2 = 2Li3N

3Ca + N2 = Ca3N2

Fe + N2 = НЕ РЕАГИРУЕТ!

2Cr + N2 = 2CrN

С фосфором образуются фосфиды

При нагревании

Na + P = Na3P

Fe + P =FexPy (бертолиды)

С углеродом образуются карбиды

При нагревании

2Li + 2C = Li2C2

Ca + 2C = CaC2

4Al + 3C = Al4C3

C кремнием образуются силициды

При нагревании

6Li + 2Si = Li6Si2

Mg + Si = Mg2Si

C водородом образуются гидриды

С кальцием при нагревании

2Li + H2 = 2LiH

Ca + H2 = CaH2

Al + H2 = НЕ РЕАГИРУЕТ!

СО СЛОЖНЫМИ

ВЕЩЕСТВАМИ

   

С водой

При нагревании, кроме Na, Ca, Sr, Ba, K, Li

2Na + 2H2O = 2NaOH + H2

Mg + 2H2O = Mg(OH)2 + H2

3Fe + 4H2O = Fe3O4 + 4H2

В присутствии амальгамы

2Al + 6H2O = 2Al(OH)3 + 3H2

 

С солями

Вытесняют менее активный металл.

Реакция не идет с металлами от Li до Na (в ряду активности метллов)

Fe + CuSO4 = FeSO4 + Cu

2Mg + TiCl4 = 2MgCl2 + Ti

Реакции с оксидами азота

 

2Cu + NO2 = N2 + 2CuO

Cu + N2O = N2 + CuO

2Cu + 2NO = N2 + 2CuO

Сталь – сплав железа и углеродаНекоторые широко используемые сплавы:

Бронза – сплав меди с оловом

Латунь – сплав меди с цинком

Амальгамы – сплавы металлов, содержащие ртуть

Прочитано
Отметь, если полностью прочитал текст

Сравнительная характеристика свойств кислот

Сильные кислоты, такие как серная кислота и соляная кислота, обладают более высокой кислотностью и являются сильными окислителями. Они также могут вызывать ожоги и другие повреждения тканей при контакте с кожей или глазами.

Слабые кислоты, такие как уксусная кислота, могут использоваться в пищевой и медицинской промышленности. Они не вызывают серьезных повреждений при контакте с кожей или глазами.

Кислоты также могут быть классифицированы как минеральные или органические. Минеральные кислоты образуются в результате реакции металлов или неметаллов с кислородом, а органические кислоты содержат углерод в своей молекуле.

Ионы кислот также могут иметь различную зарядность. Например, серная кислота (H2SO4) имеет два отрицательных и один положительный ион, а фосфорная кислота (H3PO4) имеет три отрицательных и один положительный ион. Зарядность иона кислоты влияет на ее реакционную способность и взаимодействие с другими веществами.

Соли являются продуктом реакции кислоты и основания. Например, при реакции соляной кислоты (HCl) с гидроксидом натрия (NaOH) образуется соль натрия (NaCl) и вода (H2O):

HCl + NaOH → NaCl + H2O

Соли также могут быть классифицированы как кислые, основные или нейтральные, в зависимости от того, какая кислота и основание были использованы при их образовании. Например, сульфат меди (II) (CuSO4) является кислой солью, поскольку она образуется при реакции серной кислоты (H2SO4) и гидроксида меди (Cu(OH)2).

В заключение, кислоты – это важный класс химических соединений, имеющий широкое применение в различных областях, от производства удобрений и лекарств до производства пластмасс и красителей. Знание свойств и способов применения кислот является важным компонентом обучения химии и может быть полезным для решения практических задач в различных областях деятельности.

Ответы на вопрос

Отвечает Леонардыч Евгений.

Ответ:

Объяснение:

1. Закономерность в периодах:

Изменение некоторых характеристик элементов в периодах слева направо:

а) заряд ядер атомов увеличивается;

б) радиус атомов уменьшается;

в) электроотрицательность элементов увеличивается;

г) количество валентных электронов увеличивается от 1 до 8 (равно номеру группы);

д) высшая степень окисления увеличивается (равна номеру группы);

е) число электронных слоев атомов не изменяется;

ж) металлические свойства уменьшается;

з) неметаллические свойства элементов увеличивается.

2. Высшие оксиды элементов третьего периода:

от натрия к хлору постепенно основные свойста оксидов ослабевают и возрастают кислотные свойства.

Na₂O оксид натрия, щелочной оксид, при растворении в воде образует щелочь.

MgO оксид магния, щелочноземельный оксид, проявляет только основные свойства, малорастворим в воде,

AI₂O₃ оксид алюминия, амфотерный оксид, пооявляет основные и кислотные свойста.

SiO₂ оксид кремния, кислотный оксид, не растворим в воде.

P₂O₅ оксид фосфора(V), кислотный оксид, при растворении в воде образует слабую ортофосфорную кислоту H₃PO₄.

SO₃ оксид серы(IV),  кислотный оксид, при растворении в воде образует сильную серную кислоту H₂SO₄ .

CI₂O₇ оксид хлора(VII), кислотный оксид, медленно растворяется в холодной воде, образуя сильную  хлорную кислоту HCIO₄. Оксид хлора(VII) проявляет сильные окислительные свойства.

Элемент Аргон не образует соединение, он инертен другим элементам.

Отвечает Харьков Андрей.

Высшие оксиды химических элементов третьего периода включают атомы с номерами 11 (натрий) до 18 (аргон). Они образуют оксиды с более высокими степенями окисления в сравнении с основными оксидами, которые образуются при образовании основных соединений.

Следующие элементы третьего периода образуют высшие оксиды:

  • Натрий (Na) образует пероксид (Na2O2) и супероксид (NaO2).
  • Магний (Mg) образует пероксид (MgO2).
  • Алюминий (Al) образует оксид (Al2O3).
  • Кремний (Si) образует два основных оксида: оксид (SiO2) и диоксид (SiO4).
  • Фосфор (P) образует оксид (P2O5).
  • Сера (S) образует оксид (SO3).
  • Хлор (Cl) образует оксид (Cl2O7).
  • Аргон (Ar) образует оксид (ArO3).

Закономерности изменения свойств высших оксидов третьего периода связаны с положением элементов в периодической системе:

  1. Оксиды натрия, магния и алюминия (Na2O2, NaO2, MgO2, Al2O3) являются сильными окислителями и обладают окислительными свойствами.

  2. Оксиды кремния и фосфора (SiO2, SiO4, P2O5) обладают амфотерными свойствами, то есть они могут проявлять и кислотные, и основные свойства. Это связано с их способностью образовывать кислоты и основания при реакции с водой.

  3. Оксид серы (SO3) является кислотным оксидом и может образовывать кислоты при реакции с водой.

  4. Оксид хлора (Cl2O7) является кислотным оксидом и может образовывать кислоту при реакции с водой.

  5. Оксид аргона (ArO3) является оксидом аргона и является нестабильным соединением, которое образуется только в лабораторных условиях.

Закономерности в изменении свойств высших оксидов в третьем периоде связаны с изменением электроотрицательности

Взаимодействие с кислородом

Мно­гие ме­тал­лы могут всту­пать в ре­ак­цию с кис­ло­ро­дом. Обыч­но про­дук­та­ми этих ре­ак­ций яв­ля­ют­ся ок­си­ды, но есть и ис­клю­че­ния, о ко­то­рых вы узна­е­те на сле­ду­ю­щем уроке. Рас­смот­рим вза­и­мо­дей­ствие маг­ния с кис­ло­ро­дом.

Маг­ний горит в кис­ло­ро­де, при этом об­ра­зу­ет­ся оксид маг­ния:

2Mg + O2 = 2Mg+2O-2

Рис. 1. Го­ре­ние маг­ния в кис­ло­ро­де

Атомы маг­ния от­да­ют свои внеш­ние элек­тро­ны ато­мам кис­ло­ро­да: два атома маг­ния от­да­ют по два элек­тро­на двум ато­мам кис­ло­ро­да. При этом маг­ний вы­сту­па­ет в роли вос­ста­но­ви­те­ля, а кис­ло­род – в роли окис­ли­те­ля.

Видео-опыт: “Горение магния”

Обратите внимание!!! Серебро, золото и платина с кислородом не реагируют. 2

Взаимодействие с галогенами, образуются галогениды

2. Взаимодействие с галогенами, образуются галогениды

Для ме­тал­лов ха­рак­тер­на ре­ак­ция с га­ло­ге­на­ми. Про­дук­том такой ре­ак­ции яв­ля­ет­ся га­ло­ге­нид ме­тал­ла, на­при­мер, хло­рид.

Рис. 2. Го­ре­ние калия в хлоре

Калий сго­ра­ет в хлоре  об­ра­зо­ва­ни­ем хло­ри­да калия:

2К + Cl2 = 2K+1Cl-1

Два атома калия от­да­ют мо­ле­ку­ле хлора по од­но­му элек­тро­ну. Калий, по­вы­шая сте­пень окис­ле­ния, иг­ра­ет роль вос­ста­но­ви­те­ля, а хлор, по­ни­жая сте­пень окис­ле­ния,- роль окис­ли­те­ля

3. Взаимодействие с серой

Мно­гие ме­тал­лы ре­а­ги­ру­ют с серой с об­ра­зо­ва­ни­ем суль­фи­дов. В этих ре­ак­ци­ях ме­тал­лы также вы­сту­па­ют в роли вос­ста­но­ви­те­лей, тогда как сера будет окис­ли­те­лем. Сера в суль­фи­дах на­хо­дит­ся в сте­пе­ни окис­ле­ния -2, т.е. она по­ни­жа­ет свою сте­пень окис­ле­ния с 0 до -2. На­при­мер, же­ле­зо при на­гре­ва­нии ре­а­ги­ру­ет с серой с об­ра­зо­ва­ни­ем суль­фи­да же­ле­за (II):

Fe + S = Fe+2S-2

Рис. 3. Вза­и­мо­дей­ствие же­ле­за с серой

Видео-опыт: “Взаимодействие цинка с серой”

Ме­тал­лы также могут ре­а­ги­ро­вать с во­до­ро­дом, азо­том и дру­ги­ми неме­тал­ла­ми при опре­де­лен­ных усло­ви­ях.

4. Взаимодействие с водой

Металлы по — разному  реагируют с водой:

Помните!!!

Алюминий реагирует с водой подобно активным металлам, образуя основание:

Видео-опыт: “Взаимодействие натрия с водой”

Раскалённое железо реагирует с водяным паром, образуя смешанный оксид — железную окалину Fe3O4 и водород: 3Fe+4H+12O−2 → Fe+2O−2⋅Fe+32O−2+ 4H2

5. Взаимодействие с кислотами

Металлы особо реагируют с серной концентрированной  и азотной кислотами:

H2SO(конц.) + Me = соль + H2O + Х

Щелочные 

и щелочноземельные

Fe, Cr, Al

Металлы

до водорода

 Сd-Pb

Металлы после

водорода (при t)

Au, Pt

 X

1)пассивируются на холоде;

 S↓

могут H2S илиSO2

H2SO(разб) + Cu ≠

Внимание!

Pt, Au + H2SO4 (конц.) →реакции нет

Al, Fe, Cr + H2SO4 (конц.)  холодная→ пассивация

Страницы

  • Главная страница
  • ОСНОВЫ ОБЩЕЙ ХИМИИ
  • 1.1 Важнейшие классы неорганических веществ
  • 2.1 Вещества. Атомы
  • 2.2 Размеры атомов
  • 2.3 Молекулы. Химические формулы
  • 2.4 Простые и сложные вещества
  • 2.5 Валентность элементов
  • 2.6 Моль. Молярная масса
  • 2.7 Закон Авогадро
  • 2.8 Закон сохранения массы веществ
  • 2.9 Вывод химических формул
  • 3.1 Строение атома. Химическая связь
  • 3.2 Строение атома
  • 3.4 Строение электронной оболочки атома
  • 3.5 Периодическая система химических элементов
  • 3.6 Зависимость свойств элементов
  • 3.7 Химическая связь и строение вещества
  • 3.8 Гибридизация орбиталей
  • 3.9 Донорно-акцепторный механизм образования
  • 3.10 Степени окисления элементов
  • 4.1 Классификация химических реакций
  • 4.2 Тепловые эффекты реакций
  • 4.3 Скорость химических реакций
  • 4.4 Необратимые и обратимые реакции
  • 4.5 Общая классификация химических реакций
  • НЕОРГАНИЧЕСКАЯ ХИМИЯ
  • 5.1 Растворы. Электролитическая диссоциация
  • 5.2 Количественная характеристика состава растворов
  • 5.3 Электролитическая диссоциация
  • 5.4 Диссоциация кислот, оснований и солей
  • 5.5 Диссоциация воды
  • 5.6 Реакции обмена в водных растворах электролитов
  • 5.7 Гидролиз солей
  • 6.1 Важнейшие классы неорганических веществ
  • 6.2 Кислоты, их свойства и получение
  • 6.3 Амфотерные гидроксиды
  • 6.4 Соли, их свойства и получение
  • 6.5 Генетическая связь между важнейшими классами
  • 6.6 Понятие о двойных солях
  • 7.1 Металлы и их соединения
  • 7.2 Электролиз
  • 7.3 Общая характеристика металлов
  • 7.4 Металлы главных подгрупп I и II групп
  • 7.5 Алюминий
  • 7.6 Железо
  • 7.7 Хром
  • 7.8 Важнейшие соединения марганца и меди
  • 8.1 Неметаллы и их неорганические соединения
  • 8.2 Водород, его получение
  • 8.3 Галогены. Хлор
  • 8.4 Халькогены. Кислород
  • 8.5 Сера и ее важнейшие соединения
  • 8.6 Азот. Аммиак. Соли аммония
  • 8.7 Оксиды азота. Азотная кислота
  • 8.8 Фосфор и его соединения
  • 8.9 Углерод и его важнейшие соединения
  • 8.10 Кремний и его важнейшие соединения
  • ОРГАНИЧЕСКАЯ ХИМИЯ
  • 9.1 Основные положения органической химии. Углеводороды
  • 9.2 Электронные эффекты заместителей в органических соединениях
  • 9.3 Предельные углеводороды (алканы)
  • 9.3.1 Насыщенные УВ. Метан
  • 9.4 Понятие о циклоалканах
  • 9.5 Непредельные углеводороды
  • 9.6 Диеновые углеводороды (алкадиены)
  • 9.7 Алкины
  • 9.8 Ароматические углеводороды
  • 9.9 Природные источники углеводородов
  • 10.1 Кислородсодержащие органические соединения
  • 10.2 Фенолы
  • 10.3 Альдегиды
  • 10.4 Карбоновые кислоты
  • 10.5 Сложные эфиры. Жиры
  • 10.6 Понятие о поверхностно-активных веществах
  • 10.7 Углеводы
  • 11.1 Амины. Аминокислоты
  • 11.2 Белки
  • 11.3 Понятие о гетероциклических соединениях
  • 11.4 Нуклеиновые кислоты
  • 12.1 Высокомолекулярные соединения
  • 12.2 Синтетические волокна
Понравилась статья? Поделиться с друзьями:
Центр образования
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: