Отличительные особенности синхронных и асинхронных электродвигателей

Возбуждение синхронных генераторов

8.3. Бесконтактные двигатели переменного тока

Бесконтактные двигатели постоянного тока состоят из трех элементов (рис. 98):

  1. двигателя с m-фазной обмоткой на статоре и возбужденным ротором обычно в виде постоянного магнита;
  2. датчика положения ротора (ДПР), выполненного в одном корпусе с двигателем и предназначенного для выработки сигналов управления моментами времени и последовательностью коммутации токов в обмотках статора;
  3. коммутатора, как правило, транзисторного, осуществляющего по сигналам ДПР коммутацию токов в обмотках статора.

Рис. 98. Состав бесконтактного двигателя постоянного тока

Принцип действия подобен ДПТ:: при включении транзисторов Т1 и Т2 по обмотке статора потечет ток i в указанном направлении. В статоре возбудится магнитное поле, появится движущий момент, ротор повернется таким образом, чтобы векторы Fc и Fp совместились. Когда векторы совместятся, сигнал с ДПР закроет Т1 и Т2 и откроет Т3 и Т4. Ток в обмотке статора поменяет направление, движущий момент заставит ротор вращаться дальше и повернуться на 180°.

Для плавного хода число обмоток обычно 3 и выше. В этой схеме транзисторы и коммутатор работают в ключевом режиме. Транзисторами управляют схемы формирования Фа, Фб, Фс. На эти схемы подаются управляющие импульсы с датчика положения ротора. ДПР имеет и статор и ротор. На статоре имеются полюса, на которых поочередно располагаются обмотки управления а, б, с и обмотки возбуждения (5-30 кГц). Ротор ДПР имеет сектор из магнита мягкого материала. При повороте этот сектор замыкает два соседних полюса и в соответствующей обмотке управления наводится ЭДС, включается соответствующая статорная обмотка и роторы двигателя и ДПР поворачиваются на 120°. Затем сектор замыкает два следующих полюса, в результате роторы поворачиваются еще на 120° и т.д.

Рис. 99. Схема бесконтактного двигателя постоянного тока.(а) и его механические характеристики (б)

На рис. 99 показаны схема и механические характеристики бесконтактного двигателя при разных индуктивностях обмоток статора L. Видно, что с увеличением L нелинейность характеристик увеличивается.

Частоту вращения бесконтактных двигателей можно регулировать в широких пределах путем изменения напряжения питания.

Однако на практике чаше применяется импульсный способ, сущность которого заключается в изменении не величины постоянно подводимого напряжения, а длительности питания двигателя номинальным напряжением.

Устройство

В конструкции синхронных генераторов используются две основные рабочие детали – вращающийся ротор и неподвижный статор. На валу ротора располагаются постоянные магниты либо обмотки возбуждения. Магниты имеют зубчатую форму, с противоположно направленными полюсами.

Бесщёточные генераторы.

Обмотки статора размещают таким образом, чтобы их сердечники совпадали с выступами магнитных полюсов ротора, или с сердечниками катушек ротора. Количество зубцов магнита, обычно, не превышает 6. При такой конструкции вырабатываемый ток снимается непосредственно с обмоток статоров. Другими словами, статор выступает в роли якоря.

В принципе, постоянные магниты можно расположить на статоре, а рабочие обмотки, в которых будет индуцироваться ЭДС, — на роторе. Работоспособность генератора от этого не изменится, однако потребуются кольца и щётки для снятия напряжения с обмоток якоря, а это, чаще всего, не рационально.

Схематическое изображение бесщеточного генератора без обмоток возбуждения изображено на рис. 1.

Рис. 1. Модель генератора с магнитным ротором

Пояснение:

  • схема устройства;
  • схема расположения магнитных полюсов на якоре. Здесь буквами NS обозначено коаксиальный магнит с полюсами, а литерой R – стальной магнитопровод ротора в виде когтеобразных наконечников.
  • модель генератора в разрезе. Выводы фазных обмоток статора соединены «звездой».

Синхронные машины с индукторами.

Заметим, что постоянные магниты в качестве ротора используются в альтернаторах небольшой мощности. В мощных электрических машинах всегда применяются обмотки индуктора с независимым возбуждением. Независимым источником питания является маломощный генератор постоянного тока, смонтированный на валу синхронного двигателя.

Существуют конструкции синхронных генераторов малой и средней мощности, с самовозбуждающимися обмотками. Для возбуждения индуктора выпрямленный ток фазных обмоток подаётся через щётки на кольца, расположенные на валу статора. Строение такого альтернатора показано на рис. 2.

Рис. 2. Строение синхронного генератора средней мощности

Обратите внимание на наличие щёток, на которые подаётся питания от независимого источника. По количеству фаз синхронные генераторы делятся на:

По количеству фаз синхронные генераторы делятся на:

  • однофазные;
  • двухфазные;
  • трёхфазные.

По конструкции ротора можно выделить генераторы с явновыраженными полюсами и с неявновыраженными. В неявнополюсном роторе отсутствуют выступы, а катушки провода якоря спрятаны в пазы статора.

По способу соединения фазных обмоток различают трёхфазные генераторы:

  • соединённые по шестипроводной системе Тесла (не нашли практического применения);
  • «звезда»;
  • «треугольник»;
  • сочетание шести обмоток, соединённых в виде одной «звезды» и «треугольника». Это соединение ещё называют «Славянка».

Самое распространённое соединение – «звезда» с нейтральным проводом.

Устройство синхронного генератора

Статор СГ по устройству схож с устройством статора асинхронного двигателя. Сердечник статора, в пазах которого размещается обмотка, собран из спрессованных в виде пакета пластин электротехнической стали толщиной 1-2 мм, разделенных изолирующей пленкой лака толщиной 0,08-0,1 мм.

Синхронный генератор может вырабатывать переменный ток однофазный или, чаще всего, трехфазный. К обмотке статора подключается нагрузка.

Конструктивно полюсы статора могут быть выступающими (как в тихоходных СГ со скоростью вращения не выше 1000 об/мин, вращаемых гидротурбинами), либо же не выражаться явно (как в скоростных машинах).

Синхронный генератор обратим – он может не только вырабатывать переменный ток (режим генератора), но и совершать механическую работу (режим двигателя).

Для охлаждения ротора в конструкции СГ предусмотрены крыльчатки на общем с ротором валу. Прежде чем поступить в СГ для охлаждения обмоток, воздух пропускается через фильтр, если же система охлаждения замкнута, он дополнительно охлаждается в теплообменнике. В качестве охлаждающего агента, помимо воздуха, применяется и водород ввиду своей легкости.

Концы обмоток СГ выводятся на контактную колодку, что позволяет соединить обмотки трехфазного СГ по схеме звезды или треугольника.

При необходимости получения синусоидального напряжения на выходе к форме явно выраженных полюсных наконечников предъявляются определенные требования, либо необходимо (при неявно выраженных полюсах) расположить витки роторной обмотки по особому закону.

Асинхронный пуск двигателя.

Наиболее распространенным способом
пуска синхронных двигателей является
асинхронный пуск, при котором синхронный
двигатель на время пуска превращается
в асинхронный. Для возможности образования
асинхронного пускового момента в пазах
полюсных наконечников явнополюсного
двигателя помещается пусковая
короткозамкнутая обмотка. Эта обмотка
состоит из латунных стержней, вставленных
в пазы наконечников и соединяемых
накоротко с обоих торцов медными
кольцами.

При пуске в ход двигателя обмотка
статора включается в сеть переменного
тока. Обмотка возбуждения (3) на период
пуска замыкается на некоторое сопротивление
Rг, рис. 45, ключ К находится в положении
2, сопротивление Rг = (8-10)Rв. В начальный
момент пуска при S=1, из-за большого числа
витков обмотки возбуждения, вращающее
магнитное поле статора наведет в обмотке
возбуждения ЭДС Ев, которая может
достигнуть весьма большого значения и
если при пуске не включить обмотку
возбуждения на сопротивление Rг произойдет
пробой изоляции.

Рис. 45 Рис. 46.

Процесс пуска синхронного двигателя
осуществляется в два этапа. При включении
обмотки статора (1) в сеть в двигателе
образуется вращающее поле, которое
наведет в короткозамкнутой обмотке
ротора (2) ЭДС. Под действием, которой
будет протекать в стержнях ток. В
результате взаимодействия вращающего
магнитного поля
с током в коротко
замкнутой обмотке создается вращающий
момент, как у асинхронного двигателя.
За счет этого момента ротор разгоняется
до скольжения близкого к нулю (S=0,05), рис.
46. На этом заканчивается первый этап.

Чтобы ротор двигателя втянулся в
синхронизм, необходимо создать в нем
магнитное поле включением в обмотку
возбуждения (3) постоянного тока
(переключив ключ К в положение 1). Так
как ротор разогнан до скорости близкой

к синхронной, то относительная
скорость поля статора и ротора небольшая.
Полюса плавно будут находить друг на
друга. И после ряда проскальзываний
противоположные полюса притянутся, и
ротор втянется в синхронизм. После чего
ротор будет вращаться с синхронной
скоростью, и частота вращения его будет
постоянной, рис. 46. На этом заканчивается
второй этап пуска.

Виды генераторов

Генераторы отличаются способами возбуждения. В автономных установках на транспорте, в авиации, на судах применяется самовозбуждение за счёт остаточного намагничивания. Способ отличается надёжностью и удобством применения. Распространённым вариантом здесь является отбор энергии от статорной обмотки, которая проходит через понижающий трансформатор и полупроводниковый преобразователь ПП, в результате чего на обмотку возбуждения через коллектор поступает постоянный ток (изображено на рисунке ниже – а).

Принцип самовозбуждения синхронного генератора

Другая схема реализует самовозбуждение также путём подачи переменного тока со статорной обмотки через выпрямительный трансформатор ВТ и тиристор ТП в обмотку возбуждения ОВ (изображено на рисунке выше – б). Тиристором автоматически управляет регулятор возбуждения АРВ по сигналам от входа генератора СГ через трансформаторы напряжения ТН и тока ТТ. Блок защиты БЗ не допускает образования на обмотке возбуждения повышенного напряжения и перегрузочного тока.

Система возбуждения с дополнительным генератором

Применяется также бесконтактная система возбуждения, где у СГ нет подвижных контактов для передачи энергии. Щётки с коллектором имеют только подвозбудитель ПВ, который питает пост

Бесконтактная система возбуждения синхронного генератора

оянным током обмотку I возбудителя В.

Конструктивные особенности явнополюсного ротора

Явнополюсной ротор

В первом случае, ротор имеет два или более явно выраженных полюса. Стержни (катушки), крепятся в пазах посредством использования клиньев из немагнитного изоляционного материала.

Стержни исполняют функцию обмоток возбуждения. Сердечник изготавливается из электротехнической стали. В полюсных наконечниках располагаются стержни обмотки, предназначенной для пуска, они выполняются из латуни, для которой характерно высокое удельное сопротивление.

Аналогичная обмотка, «беличья клетка»,  которая имеет в своей конструкции катушки из меди, используется для устройства генераторов, она выполняет демпфирующую роль и выступает успокоителем, потому как способствует снижению неустойчивости ротора, появляющейся во время переходного режима.

Прекращение колебаний происходит после возникновения вихревых токов, появляющихся при замыканиях в роторе с полюсами значительного веса.

Неявнополюсный ротор применяется для конструкций синхронных агрегатов большой мощности. Они отличаются высокими скоростными характеристиками. Число оборотов вала может достигать предела порядка 3000 об/мин.

Этот параметр обуславливает невозможность использования явнополюсного ротора в высокоскоростных машинах в связи с трудностью крепления полюсов и обмоток возбуждения при небольшом количестве пар полюсов.

Магнитопровод ротора изготовлен, как единое целое с валом машины и выполняется из единой поковки. Набор его производится из прочной легированной стали, в пазах осуществляется формирование обмотки из медных с серебряной присадкой проводников, это делается для повышенной термической стойкости.

27.Преимущества и недостатки синхронного двигателя.

Синхронный двигатель имеет ряд
преимуществ перед асинхронным:

1. Высокий коэффициент мощности
cosФ=0,9.

2. Возможность использования синхронных
двигателей на предприятиях для увеличения
общего коэффициента мощности.

3. Высокий КПД он больше чем у
асинхронного двигателя на (0,5-3%) это
дастигается за счёт уменьшения потерь
в меди и большого CosФ.

4. Обладает большой прочностью
обусловленной увеличенным воздушным
зазором.

5ращающий момент синхронного двигателя
прямо пропорционален напряжению в
первой степени. Т.е синхронный двигатель
будет менее чувствителен к изменению
величины напряжения сети.

Недостатки
синхронного двигателя:

1. Сложность пусковой аппаратуры и
большую стоимость.

2. Синхронные двигатели применяют
для приведения в движение машин и
механизмов, не нуждающихся в изменении
частоты вращения, а так же для механизмов
у которых с изменением нагрузки частота
вращения остаётся постоянной: (насосы,
компрессоры, вентиляторы.)

Пуск синхронного двигателя.

В виду отсутствия пускового момента
в синхронном двигателе для пуска его
используют следующие способы:

Синхронные машины специального назначения

Количество просмотров публикации Синхронные машины специального назначения — 538

Синхронные машины специального назначения — ϶ᴛᴏ машины, имеющие узкую специфическую область применения (рис. 44). К ним относят:

1) Синхронные машины с постоянными магнитами (магнитоэлектрические) – не имеют обмотки возбуждения, а возбуждающий магнитный поток у них создаётся постоянными магнитами, расположенными на роторе. В результате взаимодействия вращающегося магнитного поля статора с магнитным полем постоянных магнитов, расположенных на роторе, ротор начинает вращаться с частотой n2 = n1. При питании двигателя от однофазной сети в цепь одной из фаз включают конденсатор, необходимый для создания вращающегося магнитного поля статора. Применяют синхронные машины с постоянными магнитами чаще всего в качестве двигателей малой мощности до 100 Вт, реже — до 500 Вт. В качестве генераторов их применяют реже, в основном в качестве тахогенераторов. Синхронные машины с постоянными магнитами имеют высокие энергетические показатели (КПД и cos φ), но повышенную стоимость из-за дороговизны и сложности обработки постоянных магнитов.

Рис. 44. Магнитоэлектрические синхронные двигатели с радиальным (а) и аксиальным (б) расположением постоянных магнитов: 1 – статор; 2 – короткозамкнутый ротор; 3 – постоянный магнит.

2) Синхронные реактивные двигатели (СРД) (рис. 45) – отличаются отсутствием возбуждения со стороны ротора. Основной магнитный поток в этих двигателях создаётся исключительно за счёт МДС обмотки статора, которая в двух — и в трёхфазных СРД является вращающейся.

Рис. 45. Принцип действия синхронного реактивного двигателя; возникновение реактивного вращающего момента) (а) Мр и изменение его до 0 (б).

Простота конструкции и высокая эксплуатационная надёжность обеспечили СРД малой мощности широкое применение в устройствах автоматики, в устройствах звуко – и видеозаписи и других устройствах, требующих строгого постоянства частоты вращения. Недостатками СРД являются низкий КПД и cos φ.

3) Гистерезисные двигатели (рис. 46.) – это синхронные двигатели, у которых вращающий момент создаётся за счёт гистерезиса при перемагничивании ферромагнитного материала ротора. Статор в гистерезисном двигателе выполняется, так же как и в других машинах постоянного тока, т. е. должна быть двух – или трёхфазной, а ротор представляет собой цилиндр из магнитно-твёрдого материала без обмотки. Ротор двигателя намагничивается под действием магнитного поля статора, т. е. становится постоянным магнитом, и гистерезисный двигатель работает аналогично синхронному двигателю с постоянными магнитами. Гистерезисные двигатели выпускают на мощность до 2000 Вт и частоту 50, 400 и 500 Гц в двух – и трёхфазном исполнениях.

Рис. 46. Конструкция гистерезисного двигателя (а), создание гистерезисного момента (б) и векторная диаграмма магнитных потоков ротора Ф2 и статора Ф1 (в).

4) Индукторные (с подмагничиванием) синхронные машины — представляют из себясинхронные машины, у которых статор и ротор имеют зубчатую структуру, что позволяет им работать на частотах до тысяч герц. Их применяют в установках индукционного нагрева, в гироскопических и радиолокационных устройствах и т. д. Обмотка возбуждения (или постоянный магнит) индукторной машины, расположенная на статоре и подключенная к источнику постоянного тока, создаёт постоянный магнитный поток, который изменяется от максимального до минимального значения, т. е. пульсирует за счёт смещения зубцов вращающегося ротора относительно зубцов статора. За счёт переменной составляющей магнитного потока в обмотке статора индукторного генератора наводится ЭДС высокой частоты. Индукторные генераторы большой мощности (до 270 кВ А) применяют в качестве возбудителей турбогенераторов. Индукторные двигатели применяют в качестве шаговых двигателей, а также в качестве двигателей с весьма малыми частотами вращения.

5) Шаговые (импульсные) двигатели (ШД) – представляют из себясинхронные микродвигатели, у которых питание фаз обмотки якоря осуществляется путём подачи импульсов напряжения от какого либо коммутатора, к примеру, электронного. Под воздействием каждого такого импульса ротор двигателя совершает определённое угловое перемещение, называемое шагом. В качестве ШД обычно применяют синхронные двигатели без обмотки возбуждения на роторе: с постоянными магнитами, реактивные и индукторные (с подмагничиванием). Наибольшее применение ШД получили в электроприводах с программным управлением.

Асинхронные машины специального назначения

Количество просмотров публикации Асинхронные машины специального назначения — 605

К асинхронным машинам специального назначения относят (рис. ):

1) Индукционный регулятор напряжения (ИР) (рис. 57, а) – представляет собой асинхронную машину с фазным ротором, предназначенную для плавного регулирования напряжения. Обмотки статора и ротора ИР имеют автотрансформаторную связь, в связи с этим его иногда называют поворотным автотрансформатором. Напряжение сети подводится к обмотке ротора, при этом ротор создаёт вращающееся магнитное поле, наводящее в обмотке статора ЭДС E2. При изменении угла поворота ротора от 0 до 180˚, напряжение в обмотке статора изменится от U2 min = U1-E2 до U2 max = U1+E2.

Рис. 57. Схема индукционного регулятора напряжения (ИР) (а) и фазорегулятора (ФР) (б).

2) Фазорегулятор (ФР) (рис. 57,б)- представляет собой асинхронную машину с фазным ротором, предназначенную для изменения фазы вторичного напряжения относительно первичного при неизменном вторичном напряжении. Обмотки статора и ротора ФР электрически не соединены друг с другом, т. е. имеют трансформаторную связь, в связи с этим ФР иногда называют поворотным трансформатором. ФР применяются в устройствах автоматики (для фазового управления) и в измерительной технике (для поверки ваттметров и счётчиков).

3) Сельсины – представляют из себянебольшие одно – или трёхфазные асинхронные машины, предназначенные для работы в системах передачи угла (синхронного поворота) в системах дистанционного управления или контроля положения в пространстве каких-либо устройств (рис. 58). Простейшая синхронная передача, называемая индикаторной, содержит два сельсина: сельсин-датчик (СД) и сельсин-приёмник (СП). При включении обмоток возбуждения сельсинов в сеть в каждом из них создаётся магнитный поток возбуждения. В случае если роторы СД и СП занимают одинаковое положение относительно своих статоров, то система находится в равновесии, в случае если же ротор СД повернуть на некоторый угол, то в цепи синхронизации потечёт электрический ток. Этот ток (ток синхронизации) взаимодействуя с магнитным потоком возбуждения СП создаст электромагнитный момент, который повернёт ротор СП на тот же угол, на который был повёрнут ротор СД.

Рис. 58. Синхронная индикаторная передача на сельсинах: СД – сельсин-датчик; СП – сельсин-приёмник.

4) Асинхронные исполнительные двигатели (ИД) (рис. 59) – представляют из себянебольшие асинхронные электродвигатели

На статоре ИД расположена двухфазная обмотка; одна из обмоток – обмотка возбуждения (ОВ) – постоянно включена в сеть, а на другую – обмотку управления (ОУ) – подаётся напряжение (сигнал управления) лишь при крайне важно сти включения двигателя. С помощью этих двигателей осуществляется преобразование электрического сигнала в механическое перемещение – вращение вала

Рис.59. Схема асинхронного исполнительного двигателя: ОУ – обмотка управления; ОВ – обмотка возбуждения.

5) Линейные асинхронные двигатели (рис. 60) — ϶ᴛᴏ электродвигатели, подвижная часть которых совершает поступательное движение. По этой причине их применение для привода рабочих машин с поступательным движением рабочего органа позволяет упростить кинематику механизмов, уменьшить потери в передачах и повысить надёжность механизмов в целом. В случае если статор асинхронного двигателя с вращающимся ротором мысленно ʼʼразрезатьʼʼ и ʼʼразвернутьʼʼ в плоскость, то получим асинхронный линейный двигатель. Развёрнутый в плоскость статор двигателя (индуктор) создаёт бегущее магнитное поле и подвижная часть двигателя с короткозамкнутой обмоткой или без неё (вторичный элемент) перемещается вдоль своей оси. Подвижной частью должна быть как индуктор, так и вторичный элемент. Возможны линейные двигатели четырёх видов: электромагнитные (соленоидные), магнитоэлектрические (с применением постоянного магнита), электродинамические и асинхронные (индукционные). Наибольшее применение получили асинхронные линейные двигатели благодаря простоте конструкции и высокой надёжности. Линейные асинхронные двигатели применяют на транспорте в качестве тяговых двигателей, в приводах конвейеров, заслонок, подъёмно-транспортных механизмов.

Рис. 60. Схема асинхронного двигателя с вращающимся ротором (а), с дуговым статором (б) и линейного асинхронного двигателя (в).

Раздел 4. Химические преобразователи электрической энергии

Прямой запуск синхронного двигателя от электрической сети

Почему синхронные электродвигатели не запускаются от электрической сети?

Если ротор не имеет начального вращения, ситуация отличается от описанной выше. Северный полюс магнитного поля ротора будет притягиваться к южному полюсу вращающегося магнитного поля, и начнет двигаться в том же направлении. Но так как ротор имеет определенный момент инерции, его стартовая скорость будет очень низкой. За это время южный полюс вращающегося магнитного поля будет замещен северным полюсом. Таким образом появятся отталкивающие силы. В результате чего ротор начнет вращаться в обратную сторону. Таким образом ротор не сможет запуститься.

Демпферная обмотка — прямой запуск синхронного двигателя от электрической сети

Чтобы реализовать самозапуск синхронного электродвигателя без системы управления между наконечниками ротора размещается «беличья клетка», которая также называется демпферной обмоткой. При запуске электродвигателя катушки ротора не возбуждаются. Под действием вращающегося магнитного поля, индуцируется ток в витках «беличьей клетки» и ротор начинает вращаться подобно тому, как запускаются .

Когда ротор достигает своей максимальной скорости, подается питание на обмотку возбуждения ротора. В результате, как говорилось ранее, полюса ротора сцепляются с полюсами вращающегося магнитного поля и ротор начинает вращаться с синхронной скоростью. При вращении ротора с синхронной скоростью, относительное движение между белечьей клеткой и вращающимся магнитным полем равно нулю. Это значит, что отсутствует ток в короткозамкнутых витках, а следовательно «беличья клетка» не оказывает воздействия на синхронную работу электродвигателя.

Способы возбуждения синхронных генераторов

Самым распространенным способом создания основного магнитного потока синхронных генераторов является электромагнитное возбуждение, состоящее в том, что на полюсах ротора располагают обмотку возбуждения, при прохождении по которой постоянного тока, возникает МДС, создающая в генераторе магнитное поле.
До последнего времени для питания обмотки возбуждения применялись преимущественно специальные генераторы постоянного тока независимого возбуждения, называемые возбудителями В
(рис. 1.3, а). Обмотка возбуждения (ОВ
) получает питание от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ
).
Ротор синхронного генератора, возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронного генератора поступает через контактные кольца и щётки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя r
1 и подвозбудителя r
2 .
В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют.

В синхронных генераторах получила применение также бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя в этом случае применяют обращенный синхронный генератор переменного тока В
(рис. 1.3, б). Трехфазная обмотка 2
возбудителя, в которой наводится переменная ЭДС, расположена на роторе и вращается вместе с обмоткой возбуждения синхронного генератора и их электрическое соединение осуществляется через вращающийся выпрямитель 3
непосредственно, без контактных колец и щёток. Питание постоянным током обмотки возбуждения 1
возбудителя В осуществляется от подвозбудителя ПВ
– генератора постоянного
тока. Отсутствие скользящих контактов в цепи возбуждения синхронного генератора позволяет повысить её эксплуатационную надёжность и увеличить КПД.

В синхронных генераторах, в этом числе гидрогенераторах, получил распространение принцип самовозбуждения (рис. 1.4, а), когда
энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий
трансформатор и выпрямительный полупроводниковый преобразователь ПП
преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счёт остаточного магнетизма машины.

На рис. 1.4, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ
) с выпрямительным трансформатором (ВТ
) и тиристорным преобразователем (ТП
), через которые электроэнергия переменного тока из цепи статора СГ
после преобразования в постоянный ток подаётся в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора возбуждения АРВ
, на вход которого поступают сигналы напряжения на входе СГ
(через трансформатор напряжения ТН
) и тока нагрузки СГ
(от трансформатора тока ТТ
). Схема содержит блок защиты (БЗ
), обеспечивающий защиту обмотки возбуждения (ОВ
) от перенапряжения и токовой перегрузки.

Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5 % полезной мощности (меньшее значение относится к генераторам большой мощности).
В генераторах малой мощности находит применение принцип возбуждения постоянными магнитами, расположенными на роторе машины. Такой способ возбуждения даёт возможность избавить генератор от обмотки возбуждения. В результате конструкция генератора существенно упрощается, становится более экономичной и надёжной. Однако, из-за высокой стоимости материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничено машинами мощностью не более нескольких киловатт.

Синхронные генераторы
составляют основу электроэнергетики, так как практически вся электроэнергия во всём мире вырабатывается посредством синхронных турбо- или гидрогенераторов.
Так же синхронные генераторы находят широкое применение в составе стационарных и передвижных электроустановок или станций в комплекте с дизельными и бензиновыми двигателями.

Общий принцип действия

По соответствию основному исполнению, статор считается якорем машины и имеет многофазную обмотку, чаще всего, рассчитанную на три фазы. Он выступает в качестве индуктора, обмотка ротора (возбуждения) служит для создания потока магнитной индукции возбуждения, ее питание осуществляется при использовании  контактных колец, через щеточный механизм, от источника (якоря возбудителя). Конструктивное исполнение машины, прежде всего, зависит от необходимой частоты вращения, главным образом это сказывается на конструктивных особенностях ротора, он бывает двух основных видов, это явнополюсный и неявнополюсный типы.

Метки

5АЗМВ
DIALux
Ex
PLC
Аттестация
Боты диэлектрические
Взрывобезопасность
Галоши
Двухсторонний выключатель
Заземление
Изолированный инструмент
Инструктаж
Испытания
Кабель
Клещи изолирующие
Ковры резиновые
Контактор
Лестницы
Оперативные переговоры
Оперативный журнал
Освещение
ПРА
Перчатки диэлектрические
Проверка знаний по электробезопасности
Прогрузка ТРН
Ревизия контактов
Ремонт ПМЕ
СИЗ
СТДП
Тепловое реле ТРН
УЗО
Указатель напряжения
Фото АД 5000 кВт
Штанга изолирующая
Электробезопасность
Электродвигатель
Электроизмерительные клещи
Энергосбережение
виды ремонтов
график ППР
двухстороннее управление освещением
кабельная муфта
настройка ТРН
прием в эксплуатацию
трансформаторы

Понравилась статья? Поделиться с друзьями:
Центр образования
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: