Солнце онлайн со спутника sdo в реальном времени

Как подготовить зернохранилище к новому сезону

Первым шагом является уборка помещений и прилегающей к ним территории. Со стен, полов и прочих поверхностей необходимо удалить грязь и налет

Также важно очистить труднодоступные места, емкости, оборудование и вентиляционную систему. Прилегающую территорию стоит избавить от сорняков

Второй шаг – проведение дезинсекции. Посредством газовых, жидких или аэрозольных средств обрабатываются стены (в том числе снаружи) и крыша. Также не лишним будет обеззаразить ближайшую местность в радиусе 5 метров. Если на этапе подготовки зерна использовалась небулизация, то дезинсекция не обязательна.

Третьим шагом подготовки является дератизация – уничтожение грызунов. Делается это с помощью приманок, липких лент, мышеловок и прочих средств. После уничтожения грызуны могут еще не раз наведаться в хранилище, поэтому нужно регулярно инспектировать помещение.

Классификация

Пятна классифицируют в зависимости от срока жизни, размера, расположения.

Стадии развития

Локальное усиление магнитного поля, как было сказано выше, тормозит движение плазмы в конвекционных ячейках, тем самым замедляя вынос тепла на поверхность Солнца. Охлаждение затронутых этим процессом гранул (примерно на 1000 С) приводит к их потемнению и формированию единичного пятна. Некоторые из них исчезают через несколько дней. Другие развиваются в биполярные группы из двух пятен, магнитные линии в которых имеют противоположную полярность. Из них могут сформироваться группы из множества пятен, которые в случае дальнейшего увеличения области полутени
объединяют до сотни пятен, достигая размеров в сотни тысяч километров. После этого происходит медленное (в течение нескольких недель или месяцев) снижение активности пятен и уменьшение их размеров до маленьких двойных или одинарных точек.

Самые крупные группы пятен всегда имеют связанную группу в другом полушарии (северном или южном). Магнитные линии в таких случаях выходят из пятен в одном полушарии и входят в пятна в другом.

SOHO — наблюдения за Солнцем онлайн

Основная задача SOHO состоит в изучении Солнца, автоматические приборы установленные на аппарате собирают и передают на Землю состояние солнечной атмосферы, процессы происходящие в глубинных слоях Солнца, а также всё о солнечном ветре и об активности солнечной короны.

Стоит отметить то, что большинство красочных картинок демонстрируемых нам в новостях собрано инструментом EIT (Extreme ultraviolet Imaging Telescope, ультрафиолетовый телескоп), который наряду с другими 11 инструментами входит в состав научного оборудования станции.

На картинках ниже вы можете увидеть данные в виде анимированных GIF-файлов, поступившие за последние 48 часов со станции. Данные обновляются каждый час, так что вы видите Солнце в режиме реального времени, за вычетом небольшой разницы во времени уходящего на обработку данных.

Внимание! По клику открываются изображения весомоколо 20 мегабайт!

Всего станция имеет на борту 12 научных инструментов, при помощи которых получают изображения и замеряют потоки излучения Солнца:

  • CDS (Coronal Diagnostics Spectrometer, спектрометр для корональной диагностики);
  • CELIAS (Charge, Element, and Isotope Analysis System, система анализа зарядов, элементов и изотопов);
  • COSTEP (Comprehensive Suprathermal and Energetic Particle Analyzer, анализатор горячих и энергичных частиц);
  • EIT (Extreme ultraviolet Imaging Telescope, ультрафиолетовый телескоп. Большинство красивых картинок, размещённых в Интернете и показываемых по ТВ, получено именно этим прибором);
  • ERNE (Energetic and Relativistic Nuclei and Electron experiment, экспериментальное наблюдение релятивистских ядер и электронов);
  • GOLF (Global Oscillations at Low Frequencies, для наблюдения низкочастотных глобальных колебаний Солнца);
  • LASCO (Large Angle and Spectrometric Coronagraph, широкоугольный спектрометрический коронограф). Содержит в себе три коронографа: C1, C2, C3. Выбросы корональной массы наблюдаются на этом инструменте. Также на его снимках открыто множество околосолнечных комет);
  • MDI/SOI (Michelson Doppler Imager/Solar Oscillations Investigation, измеритель доплеровского смещения. Этот инструмент получает карты магнитного поля Солнца и скоростей вещества на высоте формирования линии наблюдений);
  • SUMER (Solar Ultraviolet Measurements of Emitted Radiation, инструмент для измерения потоков ультрафиолетового излучения);
  • SWAN (Solar Wind Anisotropies, измеритель анизотропии солнечного ветра);
  • UVCS (Ultraviolet Coronagraph Spectrometer, ультрафиолетовый спектрометр);
  • VIRGO (Variability of Solar Irradiance and Gravity Oscillations, инструмент для исследований солнечной постоянной и гравитационных колебаний).

Но несмотря на то, что главной задачей аппарата является изучение Солнца, благодаря анализу переданной на Землю информации было открыто множество околосолнечных комет (в основном при анализе информации астрономами-любителями). Фотографии сделанные SOHO доступны всем желающим через Интернет. По стоянию на декабрь 2010 года при помощи обсерватории было обнаружено уже 2000 комет.

{title}>LiveJournal

Проект STEREO — наблюдаем Солнце онлайн со спутника, солнечная активность сегодня

Что же это за оборудование? Его изобрели не кто иные, как американцы (NASA).
Здесь они опередили великую Россию, запустив проект STEREO (Solar TErrestrial RElations Observatory), который пару лет назад обеспечил нас изображением всей поверхности
Солнца в режиме онлайн. На орбиту Земли были запущены два спутника, которые носят названия Ahead и Behind
(один отстал от нашей планеты, другой опередил Землю), и сейчас они обеспечивают нас стабильным изображением светила круглые сутки. С помощью этих спутников мы можем
наблюдать за Солнцем онлайн, мы можем анализировать его поведение, смотреть за вспышками на звезде,
изучать влияние этих вспышек на магнитное поле Земли, а также прогнозировать магнитные бури.

Далее вашему вниманию изображения со спутников проекта STEREO (NASA)

Если вы хотите знать, в каком именно месте сейчас находятся спутники проекта STEREO (NASA), то изучите следующее изображение. На нем синим отмечен спутник Behind, а красный — Ahead, зеленая — Земля, желтая — Солнце.

Как защитить урожай от скрытого заражения без побочных эффектов

Обнаружить присутствие таких вредителей как моль или долгоносик на ранних стадиях практически нереально. Они находятся внутри зерновок и не оставляют следов на поверхности. Оптимальным способом их уничтожения, и в то же время профилактики, является небулизация.

Небулизация – это обработка зерна от вредителей посредством инсектицидов. Препарат вносится методом холодного распыления во время закладки или разгрузки урожая. Через 72 часа все насекомые и клещи погибают, а эффект сохраняется на протяжение 3-12 месяцев (зависит от нормы внесения). В качестве инсектицида обычно применяют «Пиригрен-50».

Преимущества небулизации:

  • Минимальная токсичность. Для распыления используют инсектицид 3-й категории, безвредный при соблюдении правил безопасности;
  • Быстрая экспозиция. Транспортировать и перерабатывать зерно можно спустя сутки с момента обработки;
  • Экономный расход препарата. Минимальная дозировка – 4 л на 100 т, максимальная – 8 л на 100 т;
  • Отсутствие побочных эффектов. Концентрация вещества в конечном продукте – 0%.

Свойства солнечных пятен

Солнечные пятна — это области с сильнейшими магнитными полями, а значит, хороший показатель солнечной активности. Эти активные области появляются сначала на более высоких широтах в начале солнечного цикла, а затем дрейфуют к экватору к концу солнечного цикла. Поскольку все явления активности звезды контролируются магнитным полем, они имеют аналогичную зависимость солнечного цикла от явлений на звезде, таких как скорость вспышки, площадь активной области, глобальная мягкая яркость рентгеновского излучения и радиоизлучение. Обеспечивает это явление особый химический состав Солнца: в основном, водород и гелий.

Появление темных солнечных пятен снижает общую светимость Солнца только примерно на 0,15% при максимуме солнечных пятен, и, таким образом, явление оказывает незначительное влияние на климат Земли.

Изменение эмиссии, которое влияет на ионизацию в ионосфере Земли, однако, оказывает более решающее влияние на климат Земли.

Солнечное пятно может быть небольшим по размерам и не превышать, например, территорию Франции. Такое малое изменение называется порой. Большие могут в несколько раз превышать площадь Земли. Они состоят из двух ярко выраженных частей: центральной, черной, которая называется ядром или тенью, и внешней части — полутени, являющейся переходом от ядра к фотосфере (фотосфера-излучающий слой звездной атмосферы). Полутень состоит из тонких ярких и темных волокон, которые направлены из фотосферы к ядру пятна.

Возникновение

Возникновение солнечного пятна: магнитные линии проникают сквозь поверхность Солнца

Пятна возникают в результате возмущений отдельных участков магнитного поля Солнца. В начале этого процесса пучок магнитных линий «прорывается» сквозь фотосферу в область короны и тормозит конвекционное движение плазмы в грануляционных ячейках, препятствуя в этих местах переносу энергии из внутренних областей наружу. Первым в этом месте возникает факел, чуть позже и западнее – маленькая точка, называемая пора
, размером несколько тысяч километров. В течение нескольких часов величина магнитной индукции растет (при начальных значениях 0,1 тесла), и размер и количество пор увеличивается. Они сливаются друг с другом и формируют одно или несколько пятен. В период наибольшей активности пятен величина магнитной индукции может достигать 0,4 тесла.

Срок существования пятен достигает нескольких месяцев, то есть отдельные пятна могут наблюдаться в течение нескольких оборотов Солнца вокруг себя. Именно этот факт (движение наблюдаемых пятен вдоль солнечного диска) послужил основой для доказательства вращения Солнца и позволил провести первые измерения периода обращения Солнца вокруг своей оси.

Пятна обычно формируются группами, однако иногда возникает одиночное пятно, живущее всего несколько дней, или два пятна, с направленными из одного в другое магнитными линиями.

Первое возникшее в такой двойной группе называется P-пятно (англ. preceding) старейшее – F-пятно (англ. following).

Только половина пятен живут больше двух дней, и всего десятая часть переживает 11-дневный порог

Группы пятен всегда вытягиваются параллельно солнечному экватору.

Данные SOHO

EIT обеспечит широкомасштабные снимки короны и переходного участка на солнечном диске до 1.5 солнечного радиуса. Оптическая система концентрируется на спектральных эмиссионных линиях из Fe IX (171 Å), Fe XII (195 Å), Fe XV (284 Å) и He II (304 Å), чтобы обеспечить чувствительный температурный анализ. Диапазон: от 6 × 104 K до 3 × 106 K

Изображение SOHO EIT 304

Поле зрения телескопа: 45 х 45 угловых минут и 2.6 угловых секунд, что гарантирует 5-кратное пространственное разрешение. EIT собирается глобально зондировать корональную плазму, а также расположенный ниже прохладный турбулентный атмосферный слой. Данные станут основой для наземных обзоров.

Появление и время существования солнечных пятен

Пятна на Солнце возникают в результате возмущений отдельных участков магнитного поля Солнца – узкие “языки” магнитного поля звезды внезапно “разрывают” фотосферу в область короны, и сильное магнитное поле подавляет конвективное движение разогретой плазмы, препятствуя в этих местах переносу энергии из внутренних областей Солнца наружу.

В месте “прорыва” фотосферы образуется затемнение, диаметр которого равен нескольким тысячам километров. Это так называемые «поры». Большая часть пор исчезает через день. Другие, напротив, увеличиваются в размерах и приобретают типичные черты пятен, становится заметной полутень, протяженность может составлять от 7000 до 50 000 км.

Срок существования пятен составляет от 2-х недель до нескольких месяцев, то есть отдельные “устойчивые” группы солнечных пятен могут наблюдаться в течение нескольких оборотов Солнца. Интересно, что именно это явление и позволило первым исследователям Солнца, убедительно доказать вращение нашей звезды, а также провести измерения периода обращения Солнца вокруг оси.

Группа устойчивых солнечных пятен на поверхности Солнца. Звезда вращается, и пятна вращаются вместе с ней

Пятна обычно образуются группами, но иногда возникает одиночное пятно, живущее всего несколько дней, или биполярная группа: два пятна разной магнитной полярности, соединённые линиями магнитного поля. Западное пятно в такой биполярной группе называется «ведущим», «головным» или «P-пятном» (от англ. preceding), восточное — «ведомым», «хвостовым» или «F-пятном» (от англ. following).

Только половина солнечных пятен живёт больше двух дней, и всего десятая часть — более 11 дней.

Пятна перемещаются но солнечной поверхности. Дело в том, что Солнце не является твердым телом и его скорость вращения в разных зонах неодинакова. Например, в зоне экватора период вращения составляет примерно 27 суток, в то время как в полярных частях светила он равен примерно 31 суткам. 

В начале 11-летнего цикла солнечной активности пятна на Солнце появляются на высоких гелиографических широтах (порядка ±25—30°), а по ходу времени, перемещаются к солнечному экватору, в конце цикла достигая уже широт ±5—10°. Эта закономерность носит название закон Шпёрера.

Использованы фото и другие материалы с: Пятна на Солнце, База данных магнитных полей солнечных пятен, Солнечный цикл

Цикличность

Реконструкция солнечной активности за 11000 лет

Солнечный цикл связан с частотой появления пятен, их активностью и сроком жизни. Один цикл охватывает примерно 11 лет. В периоды минимума активности пятен на Солнце очень мало или нет вообще, в то время как в период максимума их может наблюдаться несколько сотен. В конце каждого цикла полярность солнечного магнитного поля меняется на противоположную, поэтому правильнее говорить о 22-летнем солнечном цикле.

Длительность цикла

11 лет – приблизительный промежуток времени. Хотя в среднем он длится 11,04 года, бывают циклы длиной от 9 до 14 лет. Средние значения также меняются на протяжении столетий. Так, в 20 веке средняя длина цикла составила 10,2 года. Минимум Маундера (наряду с другими минимумами активности) говорят, что возможно увеличение цикла до порядка в сотню лет. По анализам изотопа Be 10 в гренландских льдах получены данные, что за последние 10000 лет было более 20 таких долгих минимумов.

Длина цикла непостоянна. Швейцарский астроном Макс Вальдмайер утверждал, что переход от минимума к максимуму солнечной активности происходит тем быстрее, чем больше максимальное количество солнечных пятен, зарегистрированное в этом цикле.

Начало и конец цикла

Пространственно-временное распределение магнитного поля по поверхности Солнца.

В прошлом началом цикла считался момент, когда солнечная активность пребывала в точке своего минимума. Благодаря современным методам измерений стало возможно определять изменение полярности солнечного магнитного поля, поэтому сейчас за начало цикла принимают момент изменения полярности пятен.

Циклы идентифицируются по порядковому номеру, начиная с первого, отмеченного в 1749 Johann Rudolf Wolfом. Текущий цикл (апрель 2009) имеет номер 24.

Данные о последних солнечных циклах
Номер цикла
Год и месяц начала
Год и месяц максимума
Максимальное количество пятен
18 1944-02 1947-05 201
19 1954-04 1957-10 254
20 1964-10 1968-03 125
21 1976-06 1979-01 167
22 1986-09 1989-02 165
23 1996-09 2000-03 139
24 2008-01 2012-12 87.

В 19 веке и приблизительно до 1970 года существовала догадка, что существует периодичность изменения максимального количества солнечных пятен. Эти 80-летние циклы (с наименьшими максимумами пятен в 1800-1840 и 1890-1920 гг.) в настоящее время связывают с процессами конвекции. Другие гипотезы говорят о существовании еще больших, 400-летних циклов.

Данные коронографа LASCO

LASCO (широкоугольный спектрометрический коронограф) использовался офисом SWPC для анализа солнечного нагрева и переходных событий, среди которых вспышки, корона и звездный ветер. Полученные изображение обладают огромным значением для модели WSA-Enlil, начавшей функционировать в 2011 году. Это основной инструмент для предсказания высвобождения корональной массы и воздействия солнечного ветра на нашу планету.

Изображение LASCO C3

LASCO выступает одним из 11 приборов космического аппарата НАСА SOHO (солнечная и гелиосферная обсерватория). Его запустили в 1995 году из Космического центра Кеннеди. Инструмент представлен тремя коронографами, отображающих 1.1-32 солнечных радиусов. Один радиус охватывает 700000 км. Коронограф – телескоп, препятствующий свету от солнечного диска, что позволяет рассмотреть слабое излучение короны. Коронографы LASCO выступают частью инструментального набора аппарата SOHO, запущенного в 1995 году. SWPC использовали снимки коронографа для прогнозирования погоды. Сейчас действует модель WSA-Enlil.

Солнечный диск ощутимо влияет на планетные процессы. Ведь это главный источник жизни

Поэтому солнечная активность приковывает к себе внимание, так как приводит к трансформации метеорологического состояния Земли (перепады давления, уровень воды и температурные скачки) и психического здоровья человека. Да и наблюдение в реальном времени за магнитными бурями онлайн – это незабываемое представление

Определение

Говоря простым языком, солнечные пятна — это тёмные участки, образующиеся на поверхности Солнца. Ошибочно полагать, что они не излучают яркий свет, однако по сравнению с остальной фотосферой они действительно гораздо мрачнее. Их основной характеристикой является пониженная температура. Таким образом, солнечные пятна на Солнце холоднее примерно на 1500 Кельвинов, чем другие окружающие их участки. По сути, они представляют собой те самые области, сквозь которые магнитные поля выходят на поверхность. Благодаря этому явлению можно говорить о таком процессе, как магнитная активность. Соответственно, если пятен мало, то это именуется спокойным периодом, а когда их много, то такой период будет называться активным. Во время последнего свечение Солнца чуть более яркое из-за факелов и флоккулов, расположенных вокруг тёмных участков.

На Солнце исчезли темные пятна

Ученые обеспокоены, так как на поверхности Солнца не видно ни единого темного пятна, которые наблюдались еще несколько дней назад. И это несмотря на то, что звезда находится в середине 11-летнего цикла солнечной активности.

Обычно темные пятна появляются в тех местах, где наблюдается повышенная магнитная активность. Это могут быть солнечные вспышки или выбросы корональной массы, в результате которых высвобождается энергия. Чем обусловлено подобное затишье в период активизации магнитной деятельности, не известно.

По мнению некоторых специалистов, дней с отсутствием пятен на Солнце стоило ожидать и это всего лишь временный антракт. Например, 14 августа 2011 года на звезде не было замечено ни одного темного пятна, однако в целом год сопровождался достаточно серьезной солнечной активностью.

Все это подчеркивает, что ученые в сущности не знают, что происходит на Солнце, не знают, как предугадывать его активность, — считает специалист в области солнечной физики Тони Филлипс.

Такого же мнения придерживается Алекс Янг из центра Goddard Space Flight. Мы в подробностях наблюдаем солнце всего лишь 50 лет. Это не так долго, учитывая, что оно вращается рядом 4,5 млрд лет, — отмечает Янг.

Солнечные пятна являются главным показателем солнечной магнитной активности. В темных областях температура ниже, чем в окружающих участках фотосферы.

Изучение

Наблюдение солнечных пятен ведется давно, оно своими корнями уходит ещё в эпоху до нашей эры. Так, Теофраст Аквинский ещё в IV веке до н. э. в своих работах упоминал об их существовании. Первая зарисовка потемнений на поверхности главной звезды была обнаружена в 1128 году, принадлежит она Джону Ворчестеру. Помимо этого, в древнерусских произведениях XIV века упоминается о чёрных солнечных вкраплениях. Наука стремительно начала заниматься их изучением в 1600-х годах. Большинство учёных того периода придерживались версии, что солнечные пятна — это движущиеся вокруг оси Солнца планеты. Но после изобретения Галилеем телескопа этот миф был развеян. Ему первому удалось выяснить, что пятна являются неотъемлемыми от самой солнечной структуры. Это событие породило мощную волну исследований и наблюдений, которые не прекращаются с тех самых пор. Современное изучение поражает воображение своими масштабами. В течение 400 лет прогресс в этой области сделался ощутимым, и сейчас Бельгийская королевская обсерватория занимается подсчётом количества солнечных пятен, но раскрытие всех граней этого космического явления всё ещё продолжается.

Солнечные циклы и солнечные пятна

Уже с начала XVIII в. было известно, что интенсивность пятен и время их появления находятся в рамках периода, равного примерно 11 земным годам. Этот период получил название солнечный цикл. За это время пятна на Солнце появляются, достигают максимальных размеров, а затем понемногу уменьшаются. Солнечный цикл может длиться от 7 до 15 лет, его средняя продолжительность составляет 11,07 года.

В начальной фазе солнечного цикла в течение многих дней или недель на Солнце не наблюдается никаких следов пятен. На заключительном этапе периода на Солнце можно видеть около двух десятков скоплений пятен, не говоря об единичных.

Каждое солнечное пятно существует в среднем в течение нескольких месяцев, но тот факт, что цикл составляет 11 лет, свидетельствует о глубоких и длительных процессах, происходящих в недрах Солнца.

Солнечный цикл, судя по всему, связан с взаимодействием магнитного поля светила с конвективным слоем.

В 1908 г. Иоганн Галле совершил открытие — солнечные пятна имеют мощные магнитные поля. Мощность поля типичного пятна составляет 0,25 теслы. Для сравнения — мощность магнитного поля Земли меньше и составляет 0,0001 теслы.

Замечена интересная регулярность в плане распределения магнитных полей — если группа солнечных пятен образуется в Северном полушарии, значит, в предыдущем цикле пятна дислоцировались в Южном полушарии, и так далее. Когда заканчивается один цикл и начинается другой, полярность уравновешивается. Таким образом, полный солнечный цикл, включая и перемещение полярности, длится около 22 лет.

Впрочем, пятна могут появиться одновременно в двух полушариях Солнца симметрично в отношении экватора. Места образования пятен перемещаются на 4,5° — 5° в течение всего цикла.

Солнечные пятна на фоне диска Солнца

Свойства

В среднем достигает 6000 К, в то время как у пятен она составляет около 4000 К. Однако это не мешает им по-прежнему производить мощное количество света. Солнечные пятна и активные области, то есть группы пятен, имеют разные сроки существования. Первые живут от пары дней до нескольких недель. А вот последние куда более живучие и могут оставаться в фотосфере на протяжении месяцев. Что касается структуры каждого отдельного пятна, то она представляется непростой. Центральная его часть называется тенью, которая внешне выглядит однотонной. В свою очередь, она окружена полутенью, отличающейся своей изменчивостью. В результате соприкосновения холодной плазмы и магнитной на ней заметны колебания вещества. Размеры солнечных пятен, а также их количество в группах может быть самым разнообразным.

История наблюдения за солнечными пятнами

Итальянский астроном и физик Галилео Галилей был первым, кто сумел разглядеть это астрономическое явление при помощи своей подзорной трубы учитывая расстояние до Солнца. В своем несложном телескопе он наблюдал появление и рост солнечных бляшек, видел, как они изменяют свою форму и вид и через несколько дней или недель исчезают

Он обратил внимание и на то, что все они перемещаются из восточной части Солнца в западную. Это передвижение вызвано вращением небесного тела вокруг оси

Когда Галилей усовершенствовал телескоп в 1609 году многие ученые впервые смогли увидеть солнечные пятна. Они представляли такой интерес, что велись записи об их количестве и хотя они не были совершенно точными из-за облачных дней, потерянных записей и т. д., записи показывают картину более чем за столетие.

С 1600 по 1715 год нашей эры было замечено очень мало солнечных пятен, а с 1645 по 1715 годы их вообще не было, несмотря на то, что многие ученые с помощью телескопов активно искали эти образования. Это был самый длинный известный минимум (около 50 лет) практически без солнечных пятен. После 1715 года нашей эры число наблюдаемого явления резко возросло с почти нулевого до 50-100 и вроде бы потеплел глобальный климат.

Послеуборочная обработка зерна – залог длительного хранения

Свежесобранное зерно слишком влажное и засоренное, поэтому перед его отправкой в элеватор проводятся следующие операции:

  1. Очистка. Существует 3 вида очистки: предварительная (для сильно засоренного урожая), первичная (обязательная) и вторичная (для подготовки посевного материала). Последние два вида проводятся совместно с сортировкой – разделением урожая на фракции и классы.
  2. Сушка. Посредством специальных машин влажность пшеницы снижается до 14-18%. Конкретное значение зависит от культуры и способа хранения. В некоторых случаях может применяться химический, воздушно-тепловой и контактный способ сушки.

После такой обработки урожай будет защищен от самосогревания и большинства растительных болезней. Вредители, находящиеся в зерновой массе, также будут уничтожены. Однако для ликвидации моли, долгоносиков и прочих насекомых, которым свойственно скрытое заражение, потребуются дополнительные меры.

Понравилась статья? Поделиться с друзьями:
Центр образования
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: