Солнце онлайн в реальном времени

Солнце онлайн. реальные фото nasa со спутников. солнце сегодня, сейчас

SOHO — наблюдения за Солнцем онлайн

Основная задача SOHO состоит в изучении Солнца, автоматические приборы установленные на аппарате собирают и передают на Землю состояние солнечной атмосферы, процессы происходящие в глубинных слоях Солнца, а также всё о солнечном ветре и об активности солнечной короны.

Стоит отметить то, что большинство красочных картинок демонстрируемых нам в новостях собрано инструментом EIT (Extreme ultraviolet Imaging Telescope, ультрафиолетовый телескоп), который наряду с другими 11 инструментами входит в состав научного оборудования станции.

На картинках ниже вы можете увидеть данные в виде анимированных GIF-файлов, поступившие за последние 48 часов со станции. Данные обновляются каждый час, так что вы видите Солнце в режиме реального времени, за вычетом небольшой разницы во времени уходящего на обработку данных.

Внимание! По клику открываются изображения весомоколо 20 мегабайт!

Всего станция имеет на борту 12 научных инструментов, при помощи которых получают изображения и замеряют потоки излучения Солнца:

  • CDS (Coronal Diagnostics Spectrometer, спектрометр для корональной диагностики);
  • CELIAS (Charge, Element, and Isotope Analysis System, система анализа зарядов, элементов и изотопов);
  • COSTEP (Comprehensive Suprathermal and Energetic Particle Analyzer, анализатор горячих и энергичных частиц);
  • EIT (Extreme ultraviolet Imaging Telescope, ультрафиолетовый телескоп. Большинство красивых картинок, размещённых в Интернете и показываемых по ТВ, получено именно этим прибором);
  • ERNE (Energetic and Relativistic Nuclei and Electron experiment, экспериментальное наблюдение релятивистских ядер и электронов);
  • GOLF (Global Oscillations at Low Frequencies, для наблюдения низкочастотных глобальных колебаний Солнца);
  • LASCO (Large Angle and Spectrometric Coronagraph, широкоугольный спектрометрический коронограф). Содержит в себе три коронографа: C1, C2, C3. Выбросы корональной массы наблюдаются на этом инструменте. Также на его снимках открыто множество околосолнечных комет);
  • MDI/SOI (Michelson Doppler Imager/Solar Oscillations Investigation, измеритель доплеровского смещения. Этот инструмент получает карты магнитного поля Солнца и скоростей вещества на высоте формирования линии наблюдений);
  • SUMER (Solar Ultraviolet Measurements of Emitted Radiation, инструмент для измерения потоков ультрафиолетового излучения);
  • SWAN (Solar Wind Anisotropies, измеритель анизотропии солнечного ветра);
  • UVCS (Ultraviolet Coronagraph Spectrometer, ультрафиолетовый спектрометр);
  • VIRGO (Variability of Solar Irradiance and Gravity Oscillations, инструмент для исследований солнечной постоянной и гравитационных колебаний).

Но несмотря на то, что главной задачей аппарата является изучение Солнца, благодаря анализу переданной на Землю информации было открыто множество околосолнечных комет (в основном при анализе информации астрономами-любителями). Фотографии сделанные SOHO доступны всем желающим через Интернет. По стоянию на декабрь 2010 года при помощи обсерватории было обнаружено уже 2000 комет.

{title}>LiveJournal

Инструмент AIA

AIA (Atmospheric Imaging Assembly) — сборка изображений отображает солнечную атмосферу в нескольких длинах волн. Позволяет связать изменения на поверхности Солнца с внутренними изменениями.

Этот канал особенно эффективен при изучении корональных петель, нитей и дуг на Солнце, в которых плазма движется вдоль линий магнитного поля. Наиболее яркие пятна, — места, где магнитное поле вблизи поверхности исключительно мощное.

тихая корона и верхняя переходная область.171 ангстрем (0,0000000171м).1 миллион °К.

AIA 304 Å

Этот канал особенно хорошо показывает области, где более холодные плотные шлейфы плазмы (нити и протуберанцы) расположены над видимой поверхностью Солнца. Многие из этих объектов либо не видны, либо выглядят как темные линии в других каналах. Яркие области показывают места, где плазма имеет высокую плотность.

верхняя хромосфера и нижняя переходная область.304 ангстрем (0,0000000304м).50 000 °К.

AIA 193 Å

Канал внешней атмосферы Солнца, называемый короной, а также горячей вспышечной плазмы. Здесь ярко проявятся горячие активные области, солнечные вспышки и выброс корональной массы. Темные области — корональные дыры — места, где излучается очень мало излучения, но они являются основным источником частиц солнечного ветра.

корона и горячая вспышечная плазма.193 ангстрем (0,0000000193м).1,250 миллионов °К.

AIA 211 Å

Этот канал выделяет активную область внешней атмосферы Солнца — корону. Здесь ярко проявятся активные области, солнечные вспышки и выброс корональной массы. Темные области — так называемые корональные дыры — это места, где излучается очень мало излучения, но они являются основным источником частиц солнечного ветра.

активные области короны.211 ангстрем (0,0000000211м).2 миллиона °К.

Комбинация изображений инструмента AIA .

Вселенная и ее масштабы

Современная наука доказала, что Вселенная имеет свои границы. Ученые измеряют ее размер световыми годами и насчитывают их около 45.7 миллиардов. Если представить, что один световой год равен 10 триллионам километров, то попробуйте представить себе масштабы Вселенной.

Какие тела заполняют Вселенную

Вселенную наполняют различные небесные тела. Их еще называют космическими телами Вселенной. Среди них выделяют:

  • астероиды.
  • кометы;
  • метеороиды;
  • звезды;
  • планеты;

Размеры небесных тел вселенского пространства могут быть как микроскопическими, так и гигантскими. Метеориты, астероиды и кометы относятся к малым телам Вселенной. Ученые продолжают  изучать небесные тела и открыли самое большое тело во Вселенной. Им стала звезда UY Scuti. Ее радиус в 1700 раз превышает радиус Солнца. 

Познакомимся поближе с небесными телами и определим их характеристики.

Астероиды – это глыбы из камня, которые образуют астероидный пояс. Он находится между орбитами Юпитера и Марса. Форма у астероидов неправильная, диаметр тел начинается от 30 метров и может достигать десятки километров. На данный момент ученые открыли более 97 853 768 этих малых космических тел Вселенной. Движение астероидов происходит по орбите вокруг Солнца.

Кометы – состоят из твердого ядра. Приближаясь к Солнцу, ядро начинает нагреваться и происходит испарение веществ, из которых оно состоит. В результате этого происходит образование газовой оболочки, а потом возникает хвост. По мере удаления от Солнца хвост и оболочка исчезают. Изредка кометы можно наблюдать невооруженным взглядом. Последней кометой, которая за последние 7 лет четко просматривалась на ночном небе, была C/2020 F3 NEOWISE. Это произошло в июле 2020 года. В основном же эти небесные тела ученые изучают с помощью телескопа.

Метеороиды – твердые небесные тела, размер которых больше атома, но меньше астероида. Они могут быть как первичными объектами, так и представлять собой фрагменты космических объектов, причем не только астероидов. Небесные тела, попавшие в атмосферу, называют метеорами. К ним относят осколки комет или астероидов.

Часть метеороида, достигшая земной поверхности, принято называть метеоритом. Другими словами, метеорит – это любое тело космического происхождения, упавшее на поверхность другого небесного объекта.

После падения метеориты оставляют след – кратер. На сегодняшний день крупнейший кратер Уилкса имеет диаметр 500 км.

Кратер от метеорита 

Звезды – свет и тепло исходит от этих небесных тел. Они представляют собой массивные шары, состоящие из газа. Ближайшая звезда к Земле – Солнце. На ночном небе при отсутствии облаков можно наблюдать самые разные звезды. Их значение оценили еще наши предки. Эти «мерцающие точки» помогали ориентироваться в пространстве, о них часто писали в мифах и религиозных историях. Еще в древности, люди, не имеющие никакой техники, видели в звездах образы самых различных существ. Так начали выделять созвездия. На сегодняшний день их насчитывается 88, 12 из которых являются зодиакальными. 

Планеты – достаточно большие шарообразные объекты, вращающиеся вокруг Солнца по определенной оси и не являющиеся спутником другого космического тела. В Солнечной системе 8 планет:

  • Меркурий;
  • Венера;
  • Земля;
  • Марс;
  • Юпитер;
  • Сатурн;
  • Уран;
  • Нептун.

Солнце — основной источник энергии на Земле.

Основные характеристики
Среднее расстояние от Земли 1,496×1011 м(8,31 световых минут)
Видимая звёздная величина (V) -26,74м
Абсолютная звёздная величина 4,83м
Спектральный класс G2V
Параметры орбиты
Расстояние от центра Галактики ~2,5×1020 м (26 000 световых лет)
Расстояние от плоскости Галактики ~4,6×1017 м(48 световых лет)
Галактический период обращения 2,25-2,50×108 лет
Скорость 2,17×105 м/с(на орбите вокруг центра Галактики)2×104 м/с(относительно соседних звёзд)
Физические характеристики
Средний диаметр 1,392×109 м(109 диаметров Земли)
Экваториальный радиус 6,955×108 м
Длина окружности экватора 4,379×109 м
Сплюснутость 9×10-6
Площадь поверхности 6,088×1018 м2(11 900 площадей Земли)
Объём 1,4122×1027 м2(1 300 000 объёмов Земли)
Масса 1,9891×1030 кг(332 946 масс Земли)
Средняя плотность 1409 кг/м3
Ускорение на экваторе 274,0 м/с2(27,94 g)
Вторая космическая скорость (для поверхности) 617,7 км/с(55 земных)
Эффективная температура поверхности 5515 C°
Температура короны ~1 500 000 C°
Температура ядра ~13 500 000 C°
Светимость 3,846×1026 Вт ~3.75×1028 Лм
Яркость 2,009×107 Вт/м2/ср
Характеристики вращения
Наклон оси 7,25°(относительно плоскости эклиптики)67,23°(относительно плоскости Галактики)
Прямое восхождение северного полюса 286,13°(19 ч 4 мин 30 с)
Склонение северного полюса +63,87°
Скорость вращения внешних видимых слоёв (на экваторе) 7284 км/ч
Состав фотосферы
Водород 73,46 %
Гелий 24,85 %
Кислород 0,77 %
Углерод 0,29 %
Железо 0,16 %
Сера 0,12 %
Неон 0,12 %
Азот 0,09 %
Кремний 0,07 %
Магний 0,05 %

==================================================================

HMI Фотографии Солнца, обсерватория SDO

HMI (Helioseismic and Magnetic Imager) – это прибор, предназначенный для исследования колебаний и магнитного поля на поверхности Солнца, или фотосферы. HMI, принимает излучение Солнца длинна волны 6173 Å почти непрерывно формируя терабайт данных за один день. Снимки Солнца HMI выполнены в градациях серого цвета.

HMI формирует три изображения: HMI Magnetogram – магнитограмма, HMI Intensitygram – интенсивность магнитного поля, HMI Dopplergram – доплеровский сдвиг.

Основными целями исследований при помощи HMI являются:

  • динамика конвективной зоны и солнечного динамо;
  • происхождение и эволюция солнечных пятен;
  • источники и движущие силы солнечной активности;
  • связь между внутренними процессами и динамики короны, гелиосферы;
  • прогнозирование солнечных возмущений.

HMI производит измерение движения фотосферы для изучения солнечных колебаний и измерение поляризации для изучения всех трёх компонентов фотосферного магнитного поля. HMI нацелен на определение источников и механизмов вспышечной активности Солнца. Данные HMI так же позволяют изучать корональное магнитное поле. Наблюдения с помощью HMI позволяют установить отношение между внутренней динамикой и магнитной активностью.

На магнитограмме (HMI Magnetogram) видны светлые и тёмные области соответствующие различным полюсам магнитного поля.

Интенсивность магнитного поля, а точнее области наибольшей интенсивности выделены на HMI Intensitygram.

Доплеровский эффект благодаря спектральному сдвигу позволяет визуализировать конвективную грануляцию. Более светлые области двигаются от нас, тёмные – к нам. Интересно, что западная часть cолнечного диска темнее восточной это вызвано проявлением эффекта Доплера в результате вращения Солнца.

По данным космической, спутниковой обсерватории SDO. Обновление изображений происходит каждые 10 секунд. Для просмотра в большем масштабе кликните по фотографии.

Описание спектральных диапазонов

AIA 0193 Ангстрем

Ультрафиолетовый диапазон спектра, на этой длине волны хорошо видно общее состояние внешней атмосферы Солнца. На этой волне наблюдают за вспышками солнечной плазмы и видоизменяющейся огненной короной. Между яркими вспышками можно наблюдать тёмные корональные дыры, именно в них зарождаются частицы солнечного ветра.

AIA 0304 Ангстрем

Используется для наблюдений за волокнами (нитями) и протуберанцами более холодного шлейфа плазмы. Они расположены над видимой поверхностью светила и на других волнах абсолютно не видны, или представлены невыразительными тёмными линиями. Здесь же мы можем наблюдать их точный рисунок, на котором яркие точки указывают на места с высокой плотностью раскалённой солнечной плазмы.

AIA 0171 Ангстрем

Фотографии изображения Солнца с данной длины волны показывают состояние корональных петель Солнца в режиме реального времени, дуги отходят от поверхности Солнца, двигаясь вдоль силовых магнитных линий. В местах, где пятна ярче, чем другие, магнитное поле имеет наивысшую силу.

AIA 0211 Ангстрем

Показывает самые активные области внешней атмосферы Солнца. Яркие области на изображениях показывают процессы, происходящие в короне: вспышки, выбросы корональной массы. Тёмные области показывают корональные дыры.

Малое красное пятно

Как пишет CNN, изображения также показывают другие штормовые системы, видимые на поверхности массивной планеты. Так, область, получившая название Малое красное пятно, находится в нижней правой части планеты, недалеко от ее массивного собрата. Этот меньший шторм образовался в 2000 году, когда слились три шторма одинакового размера.

Подобно Большому красному пятну, этот шторм окрашен хромофорами, которые поглощают солнечное излучение как на ультрафиолетовых, так и на синих длинах волн, придавая ему красный цвет в видимых наблюдениях и темный вид на ультрафиолетовых длинах волн. Хромофоры – это частицы, которые дают красный цвет, наблюдаемый в Большом красном пятне. На полученных снимках можно увидеть, где они расположены.

Исследования природы света в двадцатом веке

Исследования спектра в 20 веке еще больше приблизили человека к пониманию тайн мироздания. В инфракрасном свете видны самые холодные звезды вселенной. А радиотелескопы, работающие на самых длинных волнах, принесли весть о далеких катаклизмах. Происходит нечто невообразимое. Взрываются звезды и целые галактики. А спутники настроены на поиск коротковолнового ультрафиолета. Орбитальные обсерватории улавливают ультрафиолетовое излучение, которое не доходит до поверхности Земли. Гамма лучи обладают большой проникающей способностью. Эти исследования открывают взору человека глубинную вселенную.

Свет оказался весьма удобным инструментом для исследования и изучения Вселенной, благодаря одному из своих самых загадочных свойств. Свет ведет себя как волна. А раз это волна, то волна, в какой среде? Океанские волны перемещает сама вода. То, что мы слышим, доносят воздушные волны. В вакууме воздуха нет, значит, нет и звуков. Видим же мы все вокруг, благодаря свету Солнца, который пересек 150 миллионов километров космической пустоты. Так, что же такое свет? И как могут быть волны там, где нет ничего? Ответ на эти вопросы объяснит нам, что такое свет, и, в конечном итоге, позволит взглянуть на зарождение Вселенной.

Частью ответа на этот вопрос, стало открытие, которое перевернуло наше представление о собственном зрении. Нам кажется, что световые волны пронизывают пространство мгновенно. Но еще во второй половине семнадцатого века выяснилось, что это не так. Даже свету требуется время на перемещение в пространстве и скорость света все-таки конечна. Наука не просто определила скорость света с невероятной точностью, она зафиксировала свет в движении. Зрение человека фиксирует лишь кратчайшую вспышку света. Свет движется со скоростью 300 тысяч километров в секунду. Но знать с какой скоростью движется свет – это одно, а увидеть движение света – это совершенно другое.

Открытие скорости света имело колоссальное значение. В частности оно существенно приблизило науку к пониманию того, что такое свет.

Кратко о Солнце

Корональные выбросы и вспышки – это два отличных друг от друга процесса. Выброс содержит в себе плазму, состоящую из протонов и электронов с примесью гелия, кислорода, железа и других элементов. Вспышки – это излучение, которое делится на пять классов в зависимости от мощности: A, B, C, M, X. При этом А – самый низкий класс рентгеновского излучения (0.0) – 10 нановатт на квадратный метр, каждый последующий класс мощнее в 10 раз.

Солнечные пятна – области с пониженной температурой плазмы. Разница может достигать 1500 градусов.

Солнечный ветер — поток ионизированных частиц, который радиально распространяется по всей Солнечной системе, наполняя межпланетное пространство.

На нашем сайте в реальном времени представлены 4 волны, самые эффектные, если учитывать скорость изменений процессов на Солнце.

Ниже на графике представлен поток протонного излучения Солнца, получаемый со спутников серии GOES в режиме реального времени.

Использование закона на практике

Примеры отражения света встречаются повсеместно.

Рассматриваемый закон встречается намного чаще, чем кажется. Этот принцип широко используется в самых разных сферах:

  1. Зеркало – самый простой пример. Это гладкая поверхность, хорошо отражающая свет и другие типы излучений. Используются как плоские варианты, так и элементы других форм, например, сферические поверхности позволяют отдалять предметы, что делает их незаменимыми в качестве зеркал заднего вида в машине.
  2. Различное оптическое оборудование также работает благодаря рассмотренным принципам. Сюда относится все – от очков, которые встречаются везде, до мощных телескопов с выпуклыми линзами или микроскопов, применяемых в медицине и биологии.
  3. Аппараты УЗИ также используют рассматриваемый принцип. Ультразвуковое оборудование позволяет проводить точные исследования. Рентгеновские излучение распространяется по тем же принципам.
  4. СВЧ-печи – еще один пример применения рассматриваемого закона на практике. Также сюда можно отнести все оборудование, работающее за счет инфракрасного излучения (например, приборы ночного видения).
  5. Вогнутые зеркала позволяют фонарикам и светильникам повысить характеристики. При этом мощность лампочки может быть намного меньше, чем без использования зеркального элемента.

Закон отражения света объясняет многие природные явления, а знание его особенностей позволило создать оборудование, которое широко используется в наше время.

Реликтовое излучение космоса

В шестидесятых годах прошлого века учеными был пойман сигнал непонятного происхождения. В том спектральном диапазоне не должно было быть никаких сигналов из космоса. И вдруг ученые начали принимать мощные сигналы на антенну буквально отовсюду. Они были на порядок мощнее, чем шумовой фон галактики.

Вначале ученые решили, что это самые обыкновенные помехи, быть может, создаваемые самой антенной. Но потом начали искать астрономическое значение феномену. Сигнал шел не из пределов нашей галактики, и даже не из какой-то другой галактики. Казалось, что он поступает отовсюду. Его не мог излучать ни один из известных нам источников радиоволн. Ученым оставалось предположить только самое невероятное. Этот шум идет откуда-то из немыслимых глубин космоса, расположенных неизмеримо дальше, чем все известные нам источники радиосигналов.

Это были световые волны, такие древние, что со временем превратились в микроволны и охладились до нескольких градусов выше абсолютного ноля. Этот свет шел к земле практически все время существования Вселенной. Этот свет древнее любой звезды. По всей Вселенной до сих пор распространяются слабые отзвуки большого взрыва. Ученые назвали это реликтовым излучением. Оно появилось, когда возраст Вселенной составлял всего 380 тысяч лет. Оно позволяет взглянуть на мироздание в эпоху младенчества.

В раннюю эпоху своего существования, Вселенная представляла собой шар раскаленной плазмы, такой плотности, что заключенный внутри свет, не мог вырваться наружу. Затем по мере остывания плазма сжималась, и возникли первые атомы. В итоге, первый свет, тот, которому предстоит стать реликтовым излучением, вырвался на просторы космоса.

Значимость этого достижения, просто невозможно переоценить. Обитатели небольшой планеты, в системе ни чем непримечательной звезды, мы, презрели пространство и время и увидели Вселенную во всем ее величии. Так встал на место последний кусочек мозаики, составляющий актуальное представление о Мироздании. Написана последняя глава в использовании световых волн для изучения Вселенной.

 Понимание природы света, позволило человеку осветить свой мир. Световые волны пронизывают как пространство, так и время. Практически все, что нам известно о вселенной, мы обязаны свойствам света.

Казалось, что дальнейшие исследования света, дадут ответы на все вопросы. Однако за последние тридцать лет, нам открылось нечто пугающее.

Большая часть Мироздания, нам просто напросто невидна. Вселенная не только бесконечна, ее скрывает вечная тьма, окутывающая ее на девяносто девять процентов.

Смотреть изображение Солнца онлайн наблюдение со спутника

На данной страничке представлены фото с различных космических и наземных инструментов по изучению Солнца, его активности и космической погоды. Все снимки сделаны практически онлайн.Обновляются фото раз в 30 минут, либо с большим периодом. Если фотография отсутствует или не обновляется (см. дату), значит, на космическом аппарате ведутся технические работы. Как только информация с него начнет поступать, фотография автоматически появится.

Смотреть изображение Солнца онлайн, вести свои наблюдения можно благодаря спутникам изучения и мониторинга состояния космического пространства, таким как: SDO, SOHO, Stereo A и B и др.

На всех снимках Солнца онлайн время указанно Всемирное это +4 часа к Московскому.

Мониторинг солнечной активности

Длина волны 211 ангстрем (активные области), что соответствует температуре порядка 2 млн. градусов. Снимок SDO.

Длина волны 131 ангстрем (вспышечные области), что соответствует температуре порядка 0,4, 10 и 16 млн. градусов. Снимок SDO.

Длина волны 335 ангстрем (активные области), что соответствует температуре порядка 2,5 млн. градусов. Снимок SDO.

Длина волны 1700 ангстрем (фотосфера), что соответствует температуре порядка 5000 градусов. Снимок SDO.

Комбинированный снимок на длине волны 304, 211, 171 ангстрем. Снимок SDO.

Сглаженная фотография фотосферы нашей звезды в гелиосейсмический магнитометр HMI аппарата SDO.

Солнце на длине волны H Alpha, снимок CATANIA ASTROPHYSICAL OBSERVATORY

Фотосфера нашей звезды в гелиосейсмический магнитометр HMI аппарата SDO.

Доплерограмма Солнца с аппарата SDO

comments powered by HyperComments

Понравилась запись? Расскажи о ней друзьям!

Просмотров записи: 9815

Солнечная активность сегодня

Данные представленные ниже получены инструментом AIA установленном на космическом аппарате Solar Dynamics Observatory (SDO) и предназначены для получения качественных изображений короны. Снимки охватывают как минимум 1,3 солнечных диаметров в нескольких длинах волн, с разрешением около 1 угловой секунде.

Основная цель инструмента AIA — значительно улучшить наше понимание физики Солнечной атмосферы, которая формирует космическую погоду. Инструмент AIA производит данные, необходимые для количественного изучения корональных магнитных полей и плазмы. Он обеспечивает новое понимание наблюдаемых процессов и, в конечном счете, развивает передовые инструменты прогнозирования, необходимые для всех нас

Ниже приведены снимки активности Солнца сегодня онлайн в режиме реального времени

Длина волны 193 ангстрем (охватывает корону), что соответствует температуре порядка 1,2 млн. градусов.

Состояние космической погоды в Солнечной системе зависит от нашего светила. Потоки ионизированной плазмы, жесткое излучение и вспышки, солнечный ветер, это главные параметры.

Длина волны 171 ангстрем (охватывает спокойную корону), что соответствует температуре порядка 0,6 млн. градусов.

Длина волны 94 ангстрем (горячая корона), что соответствует температуре порядка 6,3 млн. градусов.

Длина волны 304 ангстрем (охватывает переходный слой и хромосферу), что соответствует температуре порядка 50 000 градусов.

Длина волны 4500 ангстрем (фотосфера), что соответствует температуре порядка 5000 градусов.

Длина волны 1600 ангстрем (переходный слой и верхняя фотосфера), что соответствует температуре порядка 5000 градусов.

Проект STEREO — наблюдаем Солнце онлайн со спутника, солнечная активность сегодня

Что же это за оборудование? Его изобрели не кто иные, как американцы (NASA).
Здесь они опередили великую Россию, запустив проект STEREO (Solar TErrestrial RElations Observatory), который пару лет назад обеспечил нас изображением всей поверхности
Солнца в режиме онлайн. На орбиту Земли были запущены два спутника, которые носят названия Ahead и Behind
(один отстал от нашей планеты, другой опередил Землю), и сейчас они обеспечивают нас стабильным изображением светила круглые сутки. С помощью этих спутников мы можем
наблюдать за Солнцем онлайн, мы можем анализировать его поведение, смотреть за вспышками на звезде,
изучать влияние этих вспышек на магнитное поле Земли, а также прогнозировать магнитные бури.

Далее вашему вниманию изображения со спутников проекта STEREO (NASA)

Если вы хотите знать, в каком именно месте сейчас находятся спутники проекта STEREO (NASA), то изучите следующее изображение. На нем синим отмечен спутник Behind, а красный — Ahead, зеленая — Земля, желтая — Солнце.

Понравилась статья? Поделиться с друзьями:
Центр образования
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: