Типы звезд: руководство по звездной классификации

Глава 20 пульсары и туманности — остатки вспышек сверхновых звезд

История открытия

Нейтронные звезды (что нечасто бывает в астрономии) ученые вначале предсказали, еще в 30‑е годы ХХ века. Началось все с работы физика Льва Ландау, написанной задолго до открытия нейтронов. В статье было высказано предположение о существовании сверхплотных звездных конфигураций с плотностью порядка ядерной. Но ничего не говорилось о возможном происхождении таких звезд, о том, где и как их можно найти.

Настоящее откровение случилось в 1934 году, когда Вальтер Бааде и Фриц Цвикки опубликовали заметку, в которой сумели правильно предвидеть, что нейтронные звезды рождаются в результате вспышек сверхновых, а потому их можно обнаружить в остатках этих взрывов.

Однако научное предсказание не сподвигло никого к поиску нейтронных звезд. Ведь обнаружить десятикилометровый шарик где‑то, бог знает где, в далеком остатке сверхновой, практически невозможно.

Первые пульсары были обнаружены совершенно случайно 28 ноября 1967 года. Сотрудники Кембриджского университета Великобритании: Джослин Белл, Энтони Хьюш и другие – вели наблюдение за звездным небом с помощью радиотелескопа, предназначенного для изучения мерцаний космических радиоисточников. Ими была зафиксирована серия периодических импульсов продолжительностью 0,3 секунды на частоте 81,5 МГц.

Мнение эксперта
Ловкачев Дмитрий
Астроном любитель

Импульсы повторялись удивительно ритмично, через 1,3373011 секунды.

Это кардинально отличалось от обычной хаотической картины случайных нерегулярных мерцаний. Появилось даже предположение о внеземной цивилизации, которая якобы посылает на Землю свои сигналы. Для этих пульсаций ввели обозначение LGM (сокращение от английского little green men «маленькие зеленые человечки»).

Предпринимались серьезные попытки распознать какой-либо код в принимаемых импульсах. Это оказалось невозможным, хотя, как рассказывают, к делу были привлечены самые квалифицированные шифровальщики.

Спустя 3 года учеными было обнаружено еще 3 подобных пульсирующих радиоисточника. Были сделаны выводы, что импульсы посылают естественные небесные тела. Им дали названия пульсары.

За открытие и интерпретацию радиоизлучения пульсаров Энтони Хьюишу была присуждена Нобелевская премия по физике.

Открытие, действительно, было выдающимся, и лишь название звезд оказалось неточным. Пульсары вовсе не пульсируют. Это название дали им тогда, когда еще полагали, что это звезды, которые, подобно цефеидам, периодически расширяются и сжимаются. Теперь мы знаем, что пульсары — это вращающиеся нейтронные звезды, но название прижилось.

Магнетары

Некоторые нейтронные звезды, названные источниками повторяющихся всплесков мягкого гамма-излучения SGR, испускают мощные всплески «мягких» гамма-лучей через нерегулярные интервалы. Количество энергии, выбрасываемое SGR при обычной вспышке, длящейся несколько десятых секунды, Солнце может излучить только за целый год. Четыре известные SGR находятся в пределах нашей Галактики и только один вне ее. Эти невероятные взрывы энергии могут быть вызваны звездотрясениями мощными версиями землетрясений, когда разрывается твердая поверхность нейтронных звезд и из их недр вырываются мощные потоки протонов, которые, увязая в магнитном поле, испускают гамма- и рентгеновское излучение. Нейтронные звезды были идентифицированы как источники мощных гамма-всплесков после огромной гаммавспышки 5 марта 1979 года, когда было выброшено столько энергии в течение первой же секунды, сколько Солнце излучает за 1 000 лет. Недавние наблюдения за одной из наиболее «активных» в настоящее время нейтронных звезд, похоже, подтверждают теорию о том, что нерегулярные мощные всплески гамма- и рентгеновского излучений вызваны звездотрясениями.

В 1998 году внезапно очнулся от «дремоты» известный SGR, который 20 лет не подавал признаков активности и выплеснул почти столько же энергии, как и гамма-вспышка 5 марта 1979 года. Больше всего поразило исследователей при наблюдении за этим событием резкое замедление скорости вращения звезды, говорящее о ее разрушении. Для объяснения мощных гамма и рентгеновских вспышек была предложена модель магнетара нейтронной звезды со сверхсильным магнитным полем. Если нейтронная звезда рождается, вращаясь очень быстро, то совместное влияние вращения и конвекции, которая играет важную роль в первые несколько секунд существования нейтронной звезды, может создать огромное магнитное поле в результате сложного процесса, известного как «активное динамо» (таким же способом создается поле внутри Земли и Солнца). Теоретики были поражены, обнаружив, что такое динамо, работая в горячей, новорожденной нейтронной звезде, может создать магнитное поле, в 10 000 раз более сильное, чем обычное поле пульсаров. Когда звезда охлаждается (секунд через 10 или 20), конвекция и действие динамо прекращаются, но этого времени вполне достаточно, чтобы успело возникнуть нужное поле.

Типы

Астрономы считают, что существуют следующие типы пульсаров:

  • Радиопульсары. Наиболее распространенная группа. Эти тела испускают радиоимпульсы с определенной частотой. Ученые думают, что диаметр этих звезд составляет считанные километры. Магнитное поле делает излучение светила похожим на луч прожектора.
  • Оптические. Эти объекты можно обнаружить в оптическом диапазоне электромагнитного спектра.
  • Рентгеновские. Испускают рентгеновское излучение. Для таких объектов характерны переменные импульсы. Рентгеновские пульсары – это тесные двойные системы, в которых одна из звезд является нейтронной, а другая – яркой звездой-гигантом.
  • Гамма-пульсары. Самые мощные во Вселенной источники гамма-излучения с чрезвычайно малой длиной волны.

Мнение эксперта
Ловкачев Дмитрий
Астроном любитель

Кандидатами на роль пульсаров вначале изучения данного явления были также черные дыры и белые карлики. Но они были исключены, поскольку не могли иметь такой малый период вращения. В результате воздействия центробежной силы белые карлики попросту были бы разрушены. Черные дыры и вовсе не могут излучать импульсы волны самостоятельно.

Беспокойное соседство

Знаменитая космическая обсерватория «Чандра» обнаружила сотни объектов (в том числе и в других галактиках), свидетельствующих о том, что не всем нейтронным звездам предназначено вести жизнь в одиночестве. Такие объекты рождаются в двойных системах, которые пережили взрыв сверхновой, создавший нейтронную звезду. А иногда случается, что одиночные нейтронные звезды в плотных звездных областях типа шаровых скоплений захватывают себе компаньона. В таком случае нейтронная звезда будет «красть» вещество у своей соседки. И в зависимости от того, насколько массивная звезда составит ей компанию, эта «кража» будет вызывать разные последствия. Газ, текущий с компаньона, массой, меньшей, чем у нашего Солнца, на такую «крошку», как нейтронная звезда, не сможет сразу упасть из-за слишком большого собственного углового момента, поэтому он создает вокруг нее так называемый аккреционный диск из «украденной» материи. Трение при накручивании на нейтронную звезду и сжатие в гравитационном поле разогревает газ до миллионов градусов, и он начинает испускать рентгеновское излучение. Другое интересное явление, связанное с нейтронными звездами, имеющими маломассивного компаньона, рентгеновские вспышки (барстеры). Они обычно длятся от нескольких секунд до нескольких минут и в максимуме дают звезде светимость, почти в 100 тысяч раз превышающую светимость Солнца.

Эти вспышки объясняют тем, что, когда водород и гелий переносятся на нейтронную звезду с компаньона, они образуют плотный слой. Постепенно этот слой становится настолько плотным и горячим, что начинается реакция термоядерного синтеза и выделяется огромное количество энергии. По мощности это эквивалентно взрыву всего ядерного арсенала землян на каждом квадратном сантиметре поверхности нейтронной звезды в течение минуты. Совсем другая картина наблюдается, если нейтронная звезда имеет массивного компаньона. Звезда-гигант теряет вещество в виде звездного ветра (исходящего от ее поверхности потока ионизированного газа), и огромная гравитация нейтронной звезды захватывает часть этого вещества себе. Но здесь вступает в свои права магнитное поле, которое заставляет падающее вещество течь по силовым линиям к магнитным полюсам.

Это означает, что рентгеновское излучение прежде всего генерируется в горячих точках на полюсах, и если магнитная ось и ось вращения звезды не совпадают, то яркость звезды оказывается переменной это тоже пульсар, но только рентгеновский. Нейтронные звезды в рентгеновских пульсарах имеют компаньонами яркие звезды-гиганты. В барстерах же компаньонами нейтронных звезд являются слабые по блеску звезды малых масс. Возраст ярких гигантов не превышает нескольких десятков миллионов лет, тогда как возраст слабых звезд-карликов может насчитывать миллиарды лет, поскольку первые гораздо быстрее расходуют свое ядерное топливо, чем вторые. Отсюда следует, что барстеры это старые системы, в которых магнитное поле успело со временем ослабеть, а пульсары относительно молодые, и потому магнитные поля в них сильнее. Может быть, барстеры когда-то в прошлом пульсировали, а пульсарам еще предстоит вспыхивать в будущем.

С двойными системами связывают и пульсары с самыми короткими периодами (менее 30 миллисекунд) так называемые миллисекундные пульсары. Несмотря на их быстрое вращение, они оказываются не молодыми, как следовало бы ожидать, а самыми старыми.

Возникают они из двойных систем, где старая, медленно вращающаяся нейтронная звезда начинает поглощать материю со своего, тоже уже состарившегося компаньона (обычно красного гиганта). Падая на поверхность нейтронной звезды, материя передает ей вращательную энергию, заставляя крутиться все быстрее. Происходит это до тех пор, пока компаньон нейтронной звезды, почти освобожденный от лишней массы, не станет белым карликом, а пульсар не оживет и не начнет вращаться со скоростью сотни оборотов в секунду. Впрочем, недавно астрономы обнаружили весьма необычную систему, где компаньоном миллисекундного пульсара является не белый карлик, а гигантская раздутая красная звезда. Ученые полагают, что они наблюдают эту двойную систему как раз в стадии «освобождения» красной звезды от лишнего веса и превращения в белого карлика. Если эта гипотеза неверна, тогда звезда-компаньон может быть обычной звездой из шарового скопления, случайно захваченной пульсаром. Почти все нейтронные звезды, которые известны в настоящее время, найдены или в рентгеновских двойных системах, или как одиночные пульсары.

Кварковая звезда

На протяжении десятилетий астрономы предполагали, что нейтронная звезда будет оставаться в равновесии. Но по мере развития квантовой теории, астрофизики предложили новый тип звезд, который мог бы появиться, если бы дегенеративное давление нейтронного ядра прекратилось. Называется она кварковая звезда. Поскольку давление массы звезды увеличивается, нейтроны распадаются на свои составляющие, верхние и нижние кварки, которые под высоким давлением и при высокой энергии могли бы существовать в свободном состоянии, вместо того чтобы производить адроны типа протонов и нейтронов. Названный «странной материей», этот суп из кварков был бы невероятно плотным, плотнее обычной нейтронной звезды.

Астрофизики до сих пор спорят на тему того, как именно могли бы образоваться эти звезды. Согласно некоторым теориям, они возникают, когда масса коллапсирующей звезды находится между необходимой массой для образования черной дыры или нейтронной звезды. Другие предполагают более экзотические механизмы. Ведущая теория гласит, что кварковые звезды формируются, когда плотные пакеты уже существующей странной материи, обернутые слабо взаимодействующими частицами (вимпами), сталкиваются с нейтронной звездой, засеивая ее ядро странной материей и начиная трансформацию. Если это происходит, нейтронная звезда будет поддерживать «корку» из материала нейтронной звезды, эффективно продолжая выглядеть нейтронной звездой, но одновременно с этим обладая ядром из странного материала. Хотя пока мы не обнаружили никаких кварковых звезд, многие из наблюдаемых нейтронных звезд вполне могли бы втайне быть таковыми.

Самые известные из них

В настоящее время открыто более 1300 пульсаров в радиодиапазоне. Подавляющее их большинство (до 90%) имеет периоды в пределах от 0,1 до 1 с. Есть пульсары с очень малыми периодами, менее 30 мс, так называемые миллисекундные пульсары.

Вновь открытые пульсары принято обозначать четырехзначным числом. Первые две цифры означают часы, две следующие – минуты прямого восхождения пульсара. Впереди ставятся две буквы латинского алфавита, указывающие на место открытия.

На сегодняшний день учеными открыты следующие пульсары:

  • Первый получил обозначение СР 1919 – Кембриджский пульсар. Его обнаружили Дэвид Х. Стейлин и Эдвард Райфенштайн в крабовидной туманности. С помощью 300-футового радиотелескопа «Грин-Бэнк» астрономы нашли два пульсирующих радиоисточника в туманности. Эти объекты считаются самыми изученными на сегодня.
  • Рентгеновский пульсар в Геркулесе открыт в 1972 году с помощью исследовательского спутника «Ухуру». Он посылает импульсы с периодом 1,24 с. Это период вращения нейтронной звезды.
  • В конце 1982 года в созвездии Лисички был обнаружен миллисекундный пульсар с периодом 0,00155 с. Вращение с таким поразительно коротким периодом означает, что звезда делает 642 оборота в секунду. Очень короткие периоды пульсаров послужили первым и самым веским аргументом в пользу интерпретации этих объектов как вращающихся нейтронных звезд.

В 2015 году ученые из коллаборации космического гамма-телескопа Ферми обнаружили первый гамма-пульсар, лежащий за пределами нашей галактики.

Пульсар PSR J0540-6919 расположен на окраине туманности Тарантул созвездия Золотая Рыба в Большом Магеллановом Облаке, расположенной в 163 тысячах световых лет от Млечного пути. Молодая звезда вращается десятки раз в секунду, испуская видимое, рентгеновское и гамма-излучения, которое в двадцать раз мощнее предыдущего рекордсмена, пульсара из Крабовидной туманности.

Возраст обнаруженного пульсара приблизительно вдвое больше пульсара из Крабовидной туманности и составляет приблизительно 1700 лет. Для сравнения, большинство из известных 2500 пульсаров имеют возраст от десяти тысяч до сотен миллионов лет.

В туманности Тарантул известны два пульсара, PSR J0540-6919 (J0540) и PSR J0537-6910 (J0537) обнаруженные с помощью обсерватории имени Эйнштейна и орбитальной рентгеновской обсерватории «Росси». Пульсар J0540 вращается около двадцати раз в секунду, а J0537 — почти 62 (второй самый большой известный период вращения для молодого пульсара). Гамма-излучение в этой области космоса было зафиксировано еще ранее в 2009 году в рамках миссии Ферми.

Мнение эксперта
Ловкачев Дмитрий
Астроном любитель

Потребовалось более шести лет наблюдений, чтобы выделить пульсации пульсара J0540 (аналогичных данных по интенсивности излучения второго пульсара пока нет).

  • В 2017 году обнаружен пульсар NGC 5907 X-1. Он расположен в 50 млн световых лет от Земли в спиральной галактике NGC 5907. За 1 секунду светило испускает такой объем энергии, сколько Солнце за 3,5 года, что делает его самым ярким из известных пульсаров.
  • Миллисекундный пульсар PSR J0952–0607 (J0952) открыт в 2017 году. Он расположен на расстоянии 3200–5700 световых лет в созвездии Секстант. По оценкам астрономов, он насчитывает около 1,4 солнечных масс, и каждые 6,4 часа вокруг него обращается небольшая звезда-спутник массой порядка 20 масс Юпитера. Нейтронная звезда перетягивает на себя часть вещества своей соседки. Этот поток заставляет ее раскручиваться все быстрее.

Образование Пульсара

Образование пульсара очень похоже на создание нейтронной звезды. Когда массивная звезда с массой в 4-8 раз больше массы нашего Солнца умирает, она взрывается как сверхновая. Внешние слои уносятся в космос, а внутреннее ядро сжимается под воздействием собственной гравитации. Гравитационное давление настолько сильно, что оно преодолевает связи, которые разделяют атомы.

Электроны и протоны под действием силы тяжести, образуют нейтроны. Гравитация на поверхности нейтронной звезды составляет примерно 2х1011 силы тяжести на Земле. Так, самые массивные звезды взрываются как сверхновые и могут сжаться в черные дыры. Если они менее массивны, как наше Солнце, они выбрасывают свои внешние слои и затем медленно остывают, превращаясь в белые карлики.

Но для звезд, масса которых в 1,4-3,2 раза превышает массу Солнца, все еще могут стать сверхновыми, но им просто не хватит массы, чтобы создать черную дыру. Эти объекты средней массы заканчивают свою жизнь как нейтронные звезды, а некоторые из них могут стать пульсарами или магнетарами. Когда эти звезды коллапсируют, они сохраняют свой угловой момент.

Но при гораздо меньших размерах их скорость вращения резко возрастает, вращаясь много раз в секунду. Этот относительно крошечный, сверхплотный объект испускает мощный взрыв излучения вдоль своих линий магнитного поля, хотя этот луч излучения не обязательно совпадает с его осью вращения. По большому счету, пульсары — это просто вращающиеся нейтронные звезды.

Исследовательские кампании

Связь пульсара Vela с Остаток сверхновой звезды Vela, сделанные астрономами на Сиднейский университет в 1968 г., было прямым наблюдательным доказательством того, что сверхновые форма нейтронные звезды.

Исследования, проведенные Kellogg и другие. с Ухуру космический аппарат 1970–71 гг. показал, что пульсар Vela и Vela X — отдельные, но пространственно связанные объекты. Период, термин Vela X был использован для описания всего остатка сверхновой. Вейлер и Панагия установили в 1980 году, что Vela X на самом деле пульсарная туманность ветра, содержащиеся в более тусклом остатке сверхновой и приводимые в движение энергией пульсара.

Исследования

Число известных нейтронных звёзд около 1200. Из них 1000 считаются радиопульсарами, а остальные определены как рентгеновские источники. Изучать эти объекты невозможно, послав к ним какой-либо аппарат. В кораблях «Пионер» были отправлены послания разумным существам. И местоположение нашей Солнечной системы указано именно с ориентацией на ближайшие к Земле пульсары. От Солнца линиями показаны направления на эти пульсары и расстояния до них. А прерывистость линии обозначает период их обращения.

Ближайший к нам нейтронный сосед расположен в 450 световых годах. Это двойная система – нейтронная звезда и белый карлик, период её пульсации 5,75 миллисекунды.

Вряд ли возможно оказаться рядом с нейтронной звездой и остаться в живых. Можно только фантазировать на эту тему. Да и как представить выходящие за границы разума величины температуры, магнитного поля и давления? Но пульсары ещё помогут нам в освоении межзвёздного пространства. Любое, даже самое дальнее галактическое путешествие, окажется не гибельным, если будут работать стабильные маяки, видимые во всех уголках Вселенной.

Замерзшая звезда

В прошлом металла в звездах практически не было, но в будущем звезды будут иметь существенно увеличенное металлическое содержание. По мере старения Вселенной будут образовываться новые и необычные типы металлических звезд, включая гипотетические замороженные звезды. Этот тип звезд был предложен в 1990-х. С обилием металлов во Вселенной, новообразованным звездам потребуются температуры ниже, чтобы стать звездами главной последовательности. Самые малые звезды с массой в 0,04 звездной (порядка массы Юпитера) могут стать звездами главной последовательности, поддерживая ядерный синтез при температуре 0 градусов по Цельсию. Они будут заморожены и окружены облаками замороженного льда. В далеком-далеком будущем эти замороженные звезды вытеснят большинство обычных звезд в холодной и унылой Вселенной.

Почему пульсары вращаются?

Медлительность для пульсара – одно вращение в секунду. Наиболее быстрые разгоняются до сотен оборотов в секунду и называются миллисекундными. Процесс вращения происходит, потому что звезды, из которых они образовались, также вращались. Но, чтобы добраться до такой скорости, нужен дополнительный источник.

Исследователи полагают, что миллисекундные пульсары сформировались при помощи воровства энергии у соседа. Можно заметить наличие чужого вещества, которое увеличивает скорость вращения. И это не очень хорошо для пострадавшего компаньона, который однажды может полностью поглотиться пульсаром. Такие системы называют черными вдовами (в честь опасного вида паука).

Художественная интерпретация связи между пульсаром и его спутником

Пульсары способны излучать свет в нескольких длинах волн (от радио до гамма-лучей). Но как они это делают? Ученые пока не могут найти точного ответа. Полагают, что за каждую длину волн отвечает отдельный механизм. Маякоподобные лучи состоят из радиоволн. Они отличаются яркостью и узостью и напоминают когерентный свет, где частицы формируют сфокусированный луч.

Чем быстрее вращение, тем слабее магнитное поле. Но скорости вращения достаточно, чтобы они излучали такие же яркие лучи, как и медленные.

Здесь отображены линии магнитного поля, вращающиеся вокруг пульсара. Фиолетовое свечение – гамма-лучи

Во время вращения, магнитное поле создает электрическое, которое способно привести заряженные частицы в подвижное состояние (электрический ток). Участок над поверхностью, где доминирует магнитное поле, называют магнитосферой. Здесь заряженные частицы ускоряются до невероятно высоких скоростей из-за сильного электрического поля. При каждом ускорении они излучают свет. Он отображается в оптическом и рентгеновском диапазоне.

А что с гамма-лучами? Исследования говорят о том, что их источник нужно искать в другом месте возле пульсара. И они будут напоминать веер.

Внутренние переменные звезды

Цефеиды – невероятно яркие звезды, превышающие солнечную светимость в 500-300000 раз. Периодичность – 1-100 дней. Это пульсирующий тип, способный резко расширяться и сокращаться за короткий срок. Это ценные объекты, так как с их помощью отмеряют дистанции к другим небесным телам и формированиям.

Переменная звезда класса цефеида RS Puppis

Среди других пульсирующих переменных можно вспомнить RR Лиры, у которой период намного короче, и она старше. Есть RV тельца – сверхгиганты с заметным колебанием. Если мы смотрим на звезды с длинным периодом, то это объекты типа Мира – холодные красные сверхгиганты. Полурегулярные – красные гиганты или сверхгиганты, чья периодичность занимает 30-1000 дней. Одна их наиболее популярных – Бетельгейзе.

Не забывайте про переменную цефеиды V1, которая отметилась в истории изучения Вселенной. Именно с ее помощью Эдвин Хаббл понял, что туманность, в которой она располагалась, это галактика. А значит, пространство не ограничивается Млечным Путем.

Катаклизматические переменные («взрывные») светятся из-за резких или очень мощных вспышек, создаваемых термоядерными процессами. Среди них присутствуют новые, сверхновые и карликовые новые.

Сверхновые – отличаются динамичностью. Количество извергаемой энергии порой превосходит возможности целой галактики. Могут разрастаться до величины 20, становясь в 100 миллионов раз ярче. Чаще всего, образуются в момент смерти массивной звезды, хотя после этого может остаться ядро (нейтронная звезда) или же сформироваться планетарная туманность.

Например, V1280 Скорпиона достигла максимальной яркости в 2007 году. За последние 70 лет ярчайшей была Новая Лебедя. Поразила всех также V603 Орла, взорвавшаяся в 1901 году. В течение 1918 года она не уступала по яркости Сириусу.

Карликовые новые – двойные белые звезды, переносящие массу, из-за чего производят регулярные вспышки. Есть симбиотические переменные – близкие двойные системы, в которых фигурирует красный гигант и горячая голубая звезда.

Извержения заметны на эруптивных переменных, способных взаимодействовать с другими веществами. Здесь очень много подтипов: вспыхивающие, сверхгиганты, протозвезды, переменные Ориона. Некоторые из них выступают бинарными системами.

Происхождение различных типов туманностей

Тёмные туманности

Тёмные туманности представляют собой плотные (обычно молекулярные) облака межзвёздного газа и межзвёздной пыли, непрозрачные из-за межзвёздного поглощения света пылью. Обычно они видны на фоне светлых туманностей. Реже тёмные туманности видны прямо на фоне Млечного Пути.

Туманность Угольный мешок

В тех частях туманностей, которые полупрозрачны в оптическом диапазоне, хорошо заметна волокнистая структура. Волокна и общая вытянутость туманностей связаны с наличием в них магнитных полей, затрудняющих движение вещества поперёк силовых линий и приводящих к развитию ряда видов магнитогидродинамических неустойчивостей. Пылевой компонент вещества туманностей связан с магнитными полями из-за того, что пылинки электрически заряжены.

Отражательные туманности

Отражательные туманности являются газово-пылевыми облаками, подсвечиваемыми звёздами. Если звезда (звёзды) находятся в межзвёздном облаке или рядом с ним, но недостаточно горяча (горячи), чтобы ионизовать вокруг себя значительное количество межзвёздного водорода, то основным источником оптического излучения туманности оказывается свет звёзд, рассеиваемый межзвёздной пылью.

Большинство отражательных туманностей расположено вблизи плоскости Млечного Пути. В ряде случаев наблюдаются отражательные туманности на высоких галактических широтах. Это газово-пылевые (часто молекулярные) облака различных размеров, формы, плотности и массы, подсвечиваемые совокупным излучением звёзд диска Млечного Пути.

Редкой разновидностью отражательной туманности является так называемое световое эхо, наблюдавшееся после вспышки новой звезды 1901 года в созвездии Персея. Яркая вспышка новой звезды подсветила пыль, и несколько лет наблюдалась слабая туманность, распространявшаяся во все стороны со скоростью света. Кроме светового эха, после вспышек новых звёзд образуются газовые туманности, подобные остаткам вспышек сверхновых звёзд.

Диффузные туманности

Диффузные туманности всегда находятся в областях звездообразования – как правило, в спиральных рукавах галактик. Обычно они связаны с крупными и холодными газопылевыми облаками, в которых формируются звезды. Яркая диффузная туманность – это небольшой кусочек такого облака, разогретый родившейся поблизости горячей массивной звездой.

Поскольку такие звезды формируются нечасто, диффузные туманности далеко не всегда сопровождают холодные облака. Например, в Орионе есть такие звезды, поэтому есть несколько диффузных туманностей, но они крошечные по сравнению с невидимым для глаза темным облаком, занимающим почти все созвездие Ориона. В небольшой области звездообразования в Тельце нет ярких горячих звезд, и поэтому нет заметных диффузных туманностей (есть лишь несколько слабых туманностей вблизи активных молодых звезд типа Т Тельца).

Планетарные туманности

Планетарные туманности – это оболочки, сброшенные звездами на заключительном этапе их эволюции. Нормальная звезда светит за счет протекающих в ее ядре термоядерных реакций, превращающих водород в гелий. Но когда запасы водорода в ядре звезды истощаются, с ней происходят быстрые перемены: гелиевое ядро сжимается, оболочка расширяется, и звезда превращается в красный гигант.

В конце концов они сбрасывают внешние части своих оболочек. Лишенная оболочки внутренняя часть звезды имеет очень высокую температуру, иногда выше 100 000° C. Она постепенно сжимается и превращается в белый карлик, лишенный ядерного источника энергии и медленно остывающий.

Планетарная туманность Улитка

Таким образом, планетарные туманности выбрасываются их центральными звездами, тогда как диффузные туманности типа Туманности Ориона – это вещество, которое осталось неиспользованным в процессе формирования звезд.

Типы нейтронных звезд

Пульсары

Это обобщающее название для всех нейтронных звезд. Пульсары имеют четко определенный период вращения, который не меняется очень долгое время. Благодаря этому свойству их прозвали «маяками вселенной»

Частицы узким потоком на очень высоких скоростях вылетают через полюса, становясь источником радиоизлучения. Из-за несовпадения осей вращения, направление потока постоянно меняется, создавая эффект маяка. И, как у каждого маяка, у пульсаров своя частота сигнала, по которой его можно идентифицировать.

Практически все обнаруженные нейтронные звёзды существуют в двойных рентгеновских системах или в качестве одиночных пульсаров.

Магнетары

При рождении очень быстро крутящейся нейтронной звезды, общие вращение и конвекция создают громадное магнитное поле. Это происходит за счёт процесса «активного динамо». Это поле превышает величины полей обычных пульсаров в десятки тысяч раз. Действие динамо заканчивается через 10 – 20 секунд, и происходит охлаждение атмосферы звезды, но магнитное поле успевает возникнуть заново за этот срок. Оно неустойчиво, и быстрая смена его структуры порождает выброс гигантского количества энергии. Получается, что магнитное поле звезды разрывает её саму. Кандидатов на роль магнетаров в нашей галактике насчитывается около десятка. Появление его возможно из звезды, превосходящей минимум в 8 раз массу нашего Солнца. Размеры же их порядка 15 км в диаметре, при массе около одной солнечной. Но достаточного подтверждения существования магнетаров пока не получено.

Рентгеновские пульсары.

Они считаются другой фазой жизни магнетара и излучают исключительно в рентгеновском диапазоне. Излучение возникает в результате взрывов, имеющих определённый период.

Некоторые нейтронные звёзды появляются в двойных системах или же приобретают компаньона, захватив его в свое гравитационное поле. Такой компаньон будет отдавать своё вещество агрессивной соседке. Если компаньон нейтронной звезды по массе не меньше Солнца, то возможны интересные явления – барстеры. Это рентгеновские вспышки, продолжительностью в секунды или минуты. Но они способны усилить светимость звезды до 100 тыс. солнечных. Перенесённые с компаньона водород и гелий наслаиваются на поверхности барстера. Когда слой становится очень плотным и горячим, запускается термоядерная реакция. Мощность такого взрыва невероятна: на каждом квадратном сантиметре звезды выделяется мощь, эквивалентная взрыву всего земного ядерного потенциала.

При наличии компаньона-гиганта, вещество теряется им в виде звёздного ветра, а нейтронная звезда втягивает его своей гравитацией. Частицы летят по силовым линиям по направлению к магнитным полюсам. При несовпадении магнитной оси  и  оси вращения, яркость звезды будет переменной. Получается рентгеновский пульсар.

Миллисекундные пульсары.

Они тоже связаны с двойными системами и обладают самыми короткими периодами (меньше 30 миллисекунд). Вопреки ожиданиям, они оказываются не самыми молодыми, а достаточно старыми. Старая и медленная нейтронная звезда поглощает материю компаньона-гиганта. Падая на поверхность захватчика, материя придаёт ей вращательную энергию, и вращение звезды усиливается. Постепенно компаньон превратится в белого карлика, потеряв в массе.

Поиск пульсаров

Главным методом для поиска пульсаров в космосе остаются радиотелескопы. Они небольшие и слабые по сравнению с другими объектами, поэтому приходится сканировать все небо и постепенно в объектив попадают эти объекты. Большая часть была найдена при помощи Обсерватории Паркса в Австралии. Много новых данных можно будет получить с Антенной решетки в квадрантный километр (SKA), стартующий в 2018 году.

В 2008 году запустили телескоп GLAST, который нашел 2050 гамма-излучающих пульсаров, среди которых 93 были миллисекундными. Этот телескоп невероятно полезен, так как сканирует все небо, в то время как другие выделяют лишь небольшие участки вдоль плоскости Млечного Пути.

Небесная карта, отображающая гамма-пульсары, найденные телескопом GLAST

Поиск различных длин волн может сталкиваться с проблемами. Дело в том, что радиоволны невероятно мощные, но могут просто не попадать в объектив телескопа. А вот гамма-излучения распространяются по больше части неба, но уступают по яркости.

Сейчас ученые знают о существовании 2300 пульсаров, найденных по радиоволнам и 160 через гамма-лучи. Есть также 240 миллисекундных пульсаров, из которых 60 производят гамма-излучение.

Типы нейтронных звезд

У некоторых представителей нейтронных звезд струи материала текут практически со скоростью света. Когда они пролетают мимо нас, то вспыхивают как свет маяка. Из-за этого их прозвали пульсарами.

Когда рентгеновские пульсары отбирают материал у более массивных соседей, то он контактирует с магнитным полем и создает мощные лучи, наблюдаемые в радио, рентгеновском, гамма и оптическом спектре. Так как источник располагается в компаньоне, то их именуют пульсарами с аккрецией.

Строение магнитного поля нейтронной звезды

Вращающиеся пульсары в небе подчиняются вращению звезд, потому что высокоэнергетические электроны взаимодействуют с магнитным полем пульсара над полюсами. Так как вещество внутри магнитосферы пульсара ускоряется, это заставляет его вырабатывать гамма-лучи. Отдача энергии замедляет вращение.

Магнитные поля магнетар в 1000 раз сильнее, чем у нейтронных звезд. Из-за чего заставляют вращаться звезду намного дольше.

Понравилась статья? Поделиться с друзьями:
Центр образования
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: