Конденсат бозе

Пятое состояние вещества физики добились новых успехов в изучении квантового мира

Как зафиксировать молекулы в одном квантовом состоянии?

В ходе нового исследования, опубликованного в журнале Nature 28 апреля, команда ученых из Чикагского университета охладила атомы цезия почти до абсолютного нуля – в этом состоянии каждый атом стационарен, а все электроны находятся на нижнем уровне; теоретически это происходит при -273,15 градусах по Цельсию (0 градусов по шкале Кельвина). Это происходило в несколько этапов.

Первым было охлаждение всей системы до 10 нанокельвинов – на волосок выше абсолютного нуля. Затем они упаковали молекулы в ползучее пространство так, чтобы те были прижаты плашмя. «Как правило, молекулы хотят двигаться во всех направлениях, и если позволить им это, то они становятся менее стабильны. Мы ограничили молекулы таким образом, чтобы они находились на двумерной поверхности и могли двигаться только в двух направлениях», – пишут авторы исследования.

Проф. Чен Чин в лаборатории в Чикагском университете. Его лаборатория объявила о прорыве в приведении нескольких молекул в одно квантовое состояние. Это – одна из самых важных целей в квантовой физике.

В результате получился набор практически идентичных молекул — выстроенных в линию с абсолютно одинаковой ориентацией, одинаковой частотой колебаний и в одном и том же квантовом состоянии. Ученые описали этот молекулярный конденсат как чистый лист новой чертежной бумаги для квантовой инженерии.

Примечательно, что до сих пор ученым удавалось связать вместе до нескольких тысяч молекул в таком состоянии и они только начинают исследовать его потенциал. Как объясняют авторы научной работы, в традиционном понимании химии мы обычно думаем о том, что несколько атомов и молекул сталкиваются и образуют новую молекулу. Но в квантовом состоянии все молекулы действуют вместе, проявляя коллективное поведение. Это открывает совершенно новый способ изучения того, как молекулы могут взаимодействовать друг с другом, чтобы превратиться в молекулы нового типа.

Результаты работы, как надеются ее авторы, в будущем могут лечь в основу форм квантовых технологий. Помимо прочего, благодаря своей богатой энергетической структуре холодные молекулы могут способствовать прогрессу в квантовой инженерии и квантовой химии. В общем, на лицо все свидетельства того, что в скором времени нас ожидаем много удивительных открытий.

Кварк-глюонная плазма

Говоря о последнем состоянии вещества в этом списке, рассмотрим состояние, с которого все началось: кварк-глюонная плазма. В ранней Вселенной состояние материи существенно отличалось от классического. Для начала немного предыстории.

Кварки — это элементарные частицы, которые мы находим внутри адронов (например, протонов и нейтронов). Адроны состоят либо из трех кварков, либо из одного кварка и одного антикварка. Кварки имеют дробные заряды и скрепляются глюонами, которые являются частицами обмена сильного ядерного взаимодействия.

Мы не видим свободные кварки в природе, но сразу после Большого Взрыва в течение миллисекунды свободные кварки и глюоны существовали. В течение этого времени температура Вселенной была настолько высокой, что кварки и глюоны двигались почти со скоростью света. Во время этого периода Вселенная состояла целиком и полностью из этой горячей кварк-глюонной плазмы. Спустя другую долю секунды Вселенная остыла достаточно, чтобы образовались тяжелые частицы вроде адронов, а кварки начали взаимодействовать между собой и глюонами. С этого момента началось образование известной нам Вселенной, и адроны начали связываться с электронами, создавая примитивные атомы.

Уже в современной Вселенной ученые пытались воссоздать кварк-глюонную плазму в больших ускорителях частиц. В процессе этих экспериментов тяжелые частицы вроде адронов сталкивались друг с другом, создавая температуру, при которой кварки отделялись на короткое время. В процессе этих экспериментов мы узнали много нового о свойствах кварк-глюонной плазмы, в которой совершенно отсутствовало трение и которая была больше похожа на жидкость, чем обычная плазма. Эксперименты с экзотическим состоянием материи позволяют нам узнавать много нового о том, как и почему наша Вселенная образовалась такой, какой мы ее знаем.

По материалам listverse.com

Агрегатное состояние химических элементов (3 часть):

61 Прометий Pm твердое тело твердое тело
62 Самарий Sm твердое тело твердое тело
63 Европий Eu твердое тело твердое тело
64 Гадолиний Gd твердое тело твердое тело
65 Тербий Tb твердое тело твердое тело
66 Диспрозий Dy твердое тело твердое тело
67 Гольмий Ho твердое тело твердое тело
68 Эрбий Er твердое тело твердое тело
69 Тулий Tm твердое тело твердое тело
70 Иттербий Yb твердое тело твердое тело
71 Лютеций Lu твердое тело твердое тело
72 Гафний Hf твердое тело твердое тело
73 Тантал Ta твердое тело твердое тело
74 Вольфрам W твердое тело твердое тело
75 Рений Re твердое тело твердое тело
76 Осмий Os твердое тело твердое тело
77 Иридий Ir твердое тело твердое тело
78 Платина Pt твердое тело твердое тело
79 Золото Au твердое тело твердое тело
80 Ртуть Hg жидкость жидкость
81 Таллий Tl твердое тело твердое тело
82 Свинец Pb твердое тело твердое тело
83 Висмут Bi твердое тело твердое тело
84 Полоний Po твердое тело твердое тело
85 Астат At твердое тело твердое тело
86 Радон Rn газ газ
87 Франций Fr твердое тело — предположительно жидкость — предположительно
88 Радий Ra твердое тело твердое тело
89 Актиний Ac твердое тело твердое тело
90 Торий Th твердое тело твердое тело

Сверхкритические жидкости (флюиды)

Большинство фазовых переходов происходит при определенной температуре и давлении. Общеизвестно, что повышение температуры в конечном счете превращает жидкость в газ. Тем не менее когда давление увеличивается вместе с температурой, жидкость совершает прыжок в царство сверхкритических жидкостей, у которых есть свойства как газа, так и жидкости. К примеру, сверхкритические жидкости могут проходить через твердые тела как газ, но также могут выступать в качестве растворителя, как жидкость. Интересно, что сверхкритическую жидкость можно сделать больше похожей на газ или на жидкость, в зависимости от комбинации давления и температуры. Это позволило ученым найти множество применений для сверхкритических жидкостей.

Хотя сверхкритические жидкости не так распространены, как аморфные твердые вещества, вы, вероятно, взаимодействуете с ними так же часто, как со стеклом. Сверхкритический диоксид углерода любят пивоваренные компании за его способность выступать в качестве растворителя при взаимодействии с хмелем, а кофе-компании используют его для производства лучшего кофе без кофеина. Сверхкритические жидкости также использовались для более эффективного гидролиза и чтобы электростанции работали при более высоких температурах. В общем, вы, вероятно, используете побочные продукты сверхкритических жидкостей каждый день.

Статистика Бозе — Эйнштейна

В 1924-м году индийский физик Сатьендра Нат Бозе предложил квантовую статистику для описания бозонов, частиц с целым спином, которые также были названы в честь него. В 1925-м году Альберт Эйнштейн обобщил труды Бозе, применив его статистику к системам, состоящим из атомов с целым спином. К таким атомам, например, относятся атомы Гелия-4. В отличие от фермионов, бозоны не подчиняются запрещающему принципу Паули, то есть несколько бозонов могут находиться в одном и том же квантовом состоянии.

Ученые Сатьендра Нат Бозе и Альберт Эйнштейн

Статистика Бозе — Эйнштейна способна описать распределение частиц с целочисленным или нулевым спином. Кроме того, эти частицы не должны взаимодействовать и должны быть тождественны, то есть неразличимы.

Вселенная вероятностей

Наша расширяющаяся вселенная, по сути, является вполне допустимым решением уравнений общей теории относительности. Однако скорость ее расширения создает проблемы для квантовой механики – существует множество возможных состояний, в которых могут находиться частицы. Но возникает вопрос – если пространство расширяется со все возрастающей скоростью, растет ли количество частиц в ней? И можно ли получить что-то из ничего?

Представим, что перед нами пустое пространство — предел физического небытия, который при определенных условиях и манипуляциях неизбежно приведет к появлению чего-то. Так, столкновение двух частиц в бездне пустого пространства может привести к возникновению пары частица-античастица. Если мы попытаемся отделить кварк от антикварка, то новый набор пар должен возникнуть из пустого пространства между ними.

Ученые по-прежнему не могут объяснить все законы квантового мира, включая квантовую запутанность (ее называл жуткой Альберт Эйнштейн)

В начале 2022 года в простой лабораторной установке, использующей уникальные свойства графена, были созданы сильные электрические поля, позволяющие самопроизвольно создавать пары частица-античастица из ничего. Вы удивитесь, но предположение о том, что из пустоты можно создать что-то появились примерно 70 лет назад – тогда эта мысль пришла в голову к одному из основателей квантовой теории Джулиану Швингеру и впоследствии получила подтверждение. Вселенная действительно создает что-то из ничего.

Это означает, что на фундаментальном уровне в нашей вселенной атомы можно разбить на отдельные частицы — кванты, которые, однако, дальше не расщепить. То же самое верно как об электронах, нейтрино и их аналогов из антивещества. Та же участь ожидает фотоны, глюоны и бозоны (включая бозон Хиггса). Однако, если убрать все эти частицы, оставшееся “пустое пространство” таковым на самом деле не будет – во многих физических смыслах.

Точно так же, как мы не можем отнять у Вселенной законы физики, мы не можем отнять у нее квантовые поля, которые ее пронизывают. С другой стороны, независимо от того, как далеко мы отодвинем любые источники материи, существуют две силы дальнего действия, последствия которых все равно останутся: электромагнетизм и гравитация.

Вселенная подчиняется законам гравитации, природу которой физики по-прежнему не понимают

Хотя мы можем создать хитроумные установки, гарантирующие, что напряженность электромагнитного поля в определенной области равна нулю, мы не можем сделать этого для гравитации; пространство не может быть “полностью опустошено” в каком-либо реальном смысле в этом отношении.

Суть квантовой статистики Бозе

Определение 1

Суть квантовой статистики Ш. Бозе сводится к взаимосвязи с квантово-механическим принципом неразличимости частиц (тождественности), аналогично статистике Ферми-Дирака. Этим статистикам подчиняются такие системы тождественных частиц, в которых нельзя исключить квантовые эффекты.

Проявление таких эффектов наблюдается при значениях концентрации частиц:

$\frac{N}{V} \geqslant nq$

Где $nq$ считается квантовой концентрацией, среднее расстояние между частицами при которой будет равным средней волне де Бройля (при заданной температуре для идеального газа).

Замечание 1

Волновые функции частиц при концентрации $nq$ будут соприкасаться, однако не перекрывать одна другую. В статистике Ферми-Дирака основная роль отводится фермионам (частицам, для которых справедлив принцип Паули), а в статистике Бозе – бозонам.

Правило распределения бозонов по энергиям вытекают из так называемого «большого канонического распределения Гиббса» (с переменным количеством частиц). При этом есть условие, что число тождественных бозонов может быть любым в данном квантовом состоянии:

$N_i=\frac{1}{e^(\frac{E_i-\mu}{kT})+1)}$

Данное распределение называется распределением Бозе-Эйнштейна.

Здесь:

  • $N_i$ характеризует среднее число бозонов в квантовом состоянии с энергией $E_i,$
  • $k$ — постоянная Больцмана;
  • $Т$ — термодинамическая температура;
  • $\mu$ — химический потенциал, не зависимый от энергии, а определяемый только плотностью числа частиц и температурой.

Поскольку квантовая концентрация с повышением температуры также увеличивается, то множество физических систем при высоких температурах подчиняются классической статистике Максвелла-Больцмана. Исключения составляют только системы с очень высокой плотностью.

В отличие от фермионов, бозоны не будут подчиняться принципу Паули (принципу запрета). Произвольное число частиц может одновременно находиться в одном состоянии. По этой причине их поведение будет сильно отличаться от поведения фермионов при низких температурах. В случае с бозонами, все частицы при понижении температуры собираются в одном состоянии, которому свойственна наименьшая энергия (это формирует так называемый конденсат Бозе-Эйнштейна).

Что-то из ничего

Продемонстрировать, что пустое пространство на самом деле таковым не является – задача трудоемкая, но при этом реальная. Так, даже если создать идеальный вакуум, лишенный всех частиц и античастиц, а электрические и магнитные поля равны нулю, в вакууме все же будет присутствовать нечто такое, что физики могут назвать, скажем, “максимальным ничто”.

Так размышлял Джулиан Швингер в 1951 году, описав как (теоретически) можно создать материю из ничего: для этого потребуется сильное электрическое поле. И хотя его коллеги предлагали нечто подобное в 1930-х годах, именно Швингер смог точно определить необходимые для этого эксперимента условия, исходя из того, что в пустом пространстве так или иначе присутствуют квантовые флуктуации, – рассказывают физики.

Частицы могут возникать из пустоты.

Согласно принципу неопределенности Гейзенберга, если квантовые поля существуют повсюду, то в любой выбранный промежуток времени и области пространства, будет присутствовать изначально неопределенное количество энергии. И чем короче рассматриваемый нами период времени, тем больше неопределенность в количестве энергии.

Фактически, единственным местом, где частицы возникают из пустоты – это области в космосе, окружающие черные дыры и нейтронные звезды. Но на огромных космических расстояниях, отделяющих нас от наиболее приближенных объектов, наши предположения остаются исключительно теоретическими.

Вселенная хранит множество тайн, которые нам с вами еще предстоит раскрыть

Но поскольку мы знаем, что электроны и позитроны буквально возникают из ничего (они просто вырваны из квантового вакуума электрическими полями) Вселенная демонстрирует невозможное. К счастью, существует множество способов изучения нашего странного мира, будь то математика, эксперименты с графеном (подробнее мы рассказывали ранее) или лазерами. И хотя мы по-прежнему далеки от истины и создания единой теории всего, сегодня мы не так уж и мало знаем о мире, в котором живем. Не так ли?

Неупорядоченная сверходнородность

У кур есть пять колбочек в сетчатке. Четыре обнаруживают цвет и одна отвечает за уровни света. Однако, в отличие от человеческого глаза или шестиугольных глаз насекомых, эти колбочки рассредоточены случайно, не имеют реального порядка. Происходит это потому, что колбочки в глазу курицы имеют зоны отчуждения вокруг, а те не позволяют двум колбочкам одного типа находиться рядом. Из-за зоны отчуждения и формы колбочек они не могут образовывать упорядоченные кристаллические структуры (как в твердых веществах), но когда все колбочки рассматриваются как одно целое, оказывается, что они имеют высокоупорядоченный узор, как видно на изображениях Принстона ниже. Таким образом, мы можем описать эти колбочки в сетчатке куриного глаза как жидкость при ближайшем рассмотрении и как твердое вещество при взгляде издалека. Это отличается от аморфных твердых тел, о которых мы говорили выше, поскольку этот сверходнородный материал будет выступать как жидкость, а аморфное твердое тело — нет.

Струнные сети

Каким состоянием вещества является космический вакуум? Большинство людей не задумываются об этом, но в последние десять лет Сяо Ган-Вэнь из Массачусетского технологического института и Майкл Левин из Гарварда предложили новое состояние вещества, которое могло бы привести нас к открытию фундаментальных частиц после электрона.

Путь к разработке модели струнно-сетевой жидкости начался в середине 90-х годов, когда группа ученых предложила так называемые квазичастицы, которые, казалось, появились в эксперименте, когда электроны проходили между двумя полупроводниками. Возник переполох, поскольку квазичастицы действовали так, будто бы обладали дробным зарядом, что казалось невозможным для физики того времени. Ученые проанализировали данные и предположили, что электрон является не фундаментальной частицей Вселенной и что существуют фундаментальные частицы, которых мы пока не обнаружили. Эта работа принесла им Нобелевскую премию, но позже выяснилось, что в результаты их работы закралась ошибка в эксперименте. О квазичастицах благополучно забыли.

Но не все. Вэнь и Левин взяли за основу идею квазичастиц и предложили новое состояние вещества, струнно-сетевое. Основным свойством такого состояния является квантовая запутанность. Как и в случае с неупорядоченной сверходнородностью, если вы с близкого расстояния взглянете на струнно-сетевое вещество, оно будет похоже на неупорядоченный набор электронов. Но если взглянуть на него как на цельную структуру, вы увидите высокую упорядоченность из-за квантово-запутанных свойств электронов. Вэнь и Левин затем расширили свою работу, чтобы охватить другие частицы и свойства запутанности.

Проработав компьютерные модели для нового состояния вещества, Вэнь и Левин обнаружили, что концы струн-сетей могут производить разнообразные субатомные частицы, включая легендарные «квазичастицы». Еще большим сюрпризом стало то, что при вибрации струнно-сетевого вещества оно делает это в соответствии с уравнениями Максвелла, отвечающими за свет. Вэнь и Левин предположили, что космос наполнен струнными сетями запутанных субатомных частиц и что концы этих струн-сетей представляют собой субатомные частицы, которые мы наблюдаем. Также они предположили, что струнно-сетевая жидкость может обеспечивать существование света. Если космический вакуум заполнен струнно-сетевой жидкостью, это может позволить нам объединить свет и материю.

Все это может показаться очень надуманным, но в 1972 году (за десятки лет до струнно-сетевых предложений) геологи обнаружили в Чили странный материал — гербертсмитит. В этом минерале электроны образуют треугольные структуры, которые, похоже, противоречат всему, что мы знаем о взаимодействии электронов друг с другом. Кроме того, эта треугольная структура была предсказана в рамках струнно-сетевой модели, и ученые работали с искусственным гербертсмититом, чтобы точно подтвердить модель.

Твердый

Твердотельные объекты представлены определенным образом, то есть их форма обычно не меняется, ее невозможно изменить без приложения большой силы или изменения состояния рассматриваемого объекта.

Атомы в этих объектах переплетаются, образуя определенные структуры., что дает им возможность противостоять силам, не деформируя тело, в котором они находятся. Это делает эти предметы прочными и стойкими.

Твердая H2O — это лед.

Объекты, находящиеся в твердом состоянии, обычно имеют следующие характеристики:

  • Высокая сплоченность.
  • Определенная форма.
  • Память формы: в зависимости от объекта он возвращается в исходное состояние при деформации.
  • Они практически несжимаемы.
  • Устойчивость к фрагментации
  • Нет беглости.

Аморфные и твердые

Аморфные твердые вещества — это довольно интересная подгруппа хорошо известного твердого состояния. В обычном твердом объекте молекулы хорошо организованы и не особо имеют пространство для движения. Это дает твердому веществу высокую вязкость, что является мерой сопротивления текучести. Жидкости, с другой стороны, имеют неорганизованную молекулярную структуру, что позволяет им течь, растекаться, изменять форму и принимать форму сосуда, в котором они находятся. Аморфные твердые вещества находятся где-то между этими двумя состояниями. В процессе витрификации жидкости остывают и их вязкость увеличивается до момента, когда вещество уже не течет подобно жидкости, но его молекулы остаются неупорядоченными и не принимают кристаллическую структуру, как обычные твердые вещества.

Наиболее распространенным примером аморфного твердого вещества является стекло. В течение тысяч лет люди делали стекло из диоксида кремния. Когда стеклоделы охлаждают кремнезем из жидкого состояния, он на самом деле не затвердевает, когда опускается ниже точки плавления. Когда температура падает, вязкость растет, вещество кажется тверже. Однако его молекулы по-прежнему остаются неупорядоченными. И тогда стекло становится аморфным и твердым одновременно. Этот переходный процесс позволил ремесленникам создавать красивые и сюрреалистические стеклянные структуры.

Каково же функциональное различие между аморфными твердыми веществами и обычным твердым состоянием? В повседневной жизни оно не особо заметно. Стекло кажется совершенно твердым, пока вы не изучите его на молекулярном уровне. И миф о том, что стекло стекает с течением времени, не стоит ломаного гроша. Чаще всего этот миф подкрепляется доводами о том, что старое стекло в церквях кажется толще в нижнем части, но обусловлено это несовершенством стеклодувного процесса на момент создания этих стекол. Впрочем, изучать аморфные твердые вещества вроде стекла интересно с научной точки зрения для исследования фазовых переходов и молекулярной структуры.

Теория

Конденсат Бозе-Эйнштейна (КБЭ) на основе фотонов — это весьма «продвинутый» вариант КБЭ, и очень долго считалось, что его нельзя получить в принципе. Но прежде чем рассказать о нем, стоит пояснить, а что вообще такое конденсат Бозе-Эйнштейна. Родиной этого понятия может считаться Индия – именно там большую часть времени жил и работал человек, впервые указавший на возможность существования неизвестного ранее состояния материи. Этого человека звали Шатьендранат Бозе, и он был одним из отцов-основателей квантовой механики.

Чтобы отметить научные заслуги Бозе, в его честь был назван один из типов элементарных частиц – бозоны. К бозонам относятся, например, фотоны — переносчики электромагнетизма, и глюоны, которые переносят сильное взаимодействие и определяют притяжение друг к другу кварков. Знаменитый бозон Хиггса, ради поисков которого был создан Большой адронный коллайдер, тоже относится к этой категории элементарных частиц.

Принадлежность частицы к бозонам определяется по ее спину – собственному моменту импульса элементарных частиц (иногда понятие спина определяют как вращение частицы вокруг собственной оси, но такое представление слишком упрощает ситуацию). Спин бозона всегда целый — то есть выражается целым числом. У другой разновидности элементарных частиц — фермионов — спин полуцелый.

Фермионы (слева) выстраиваются «в линейку» по энергиям квантовых уровней, а бозоны (справа) могут скапливаться на уровне с наименьшей энергией. Изображение выпуска 23 бюллетеня ПерсТ за 2003 год

Lenta.ru

Бозоны и фермионы отличаются друг от друга не только значением спина — эти частицы несходны по целому ряду фундаментальных свойств. В частности, бозоны могут не подчиняться так называемому принципу, или запрету, Паули, который постулирует, что две элементарные частицы не могут находиться в одном и том же квантовом состоянии. Квантовые состояния отличаются друг от друга по энергиям, и при низких температурах фермионы (которые строго соблюдают запрет Паули) поочередно заполняют последовательные состояния. Первыми занимаются состояния с наименьшей энергией (самые «ненапряжные» для частиц), а последними – с самой высокой энергией. Нагляднее всего это свойство фермионов выстраиваться в линейку по квантовым состояниям заметно при низких температурах, когда поведение системы не маскируется за счет температурных флуктуаций.

Бозоны при низких температурах ведут себя иначе — они не ограничены запретом Паули и поэтому стремятся по возможности занять самые удобные места, то есть квантовые уровни с наименьшей энергией. В итоге при охлаждении бозонов происходит следующее: они начинают двигаться очень медленно — со скоростями порядка нескольких миллиметров в секунду, очень тесно «прижимаются» друг к другу, «соскакивают» в одно и то же квантовое состояние и в конце концов начинают вести себя скоординировано — так, как вела бы себя одна гигантская квантовая частица.

Именно о такой трансформации, которая должна происходить с бозонами при температурах, близких к абсолютному нулю, Шатьендранат Бозе написал в начале 1920-х годов Альберту Эйнштейну. Бозе собирался послать свои выкладки в журнал Zeitschrift fur Physik, но Эйнштейн так вдохновился идеями индийского коллеги, что немедленно сам перевел его статью с английского на немецкий и отправил в редакцию. Создатель общей и специальной теорий относительности развил соображения Бозе (индус рассматривал только фотоны, а Эйнштейн дополнил теорию Бозе для частиц, обладающих массой) и изложил свои выводы еще в двух статьях, которые также были опубликованы в Zeitschrift fur Physik.

Применение квантовой статистики Бозе

Замечание 2

Одним из актуальных применений квантовой статистики Бозе считается теория теплоемкости твердых тел. Тепловые колебания твердых тел описываются в виде возбуждений совокупности осцилляторов, которые соответствуют нормальным колебаниям кристаллической решетки.

Возбужденные состояния системы осцилляторов могут быть описаны подобно идеальному газу определенных квазичастиц (фононов). Эти квазичастицы будут подчиняться квантовой статистике Бозе. На основании данного представления для ученых становится возможным правильное описание поведения твердых тел в условиях низких температур (в частности, сформировать закон теплоемкости Дебая).

Спин фонона принимает нулевое значение в единицах $\bar{h}$. Фононы и процессы их непосредственного взаимодействия с электронами имеют фундаментальное значение для современных представлений о физике сверхпроводников, процессах теплопроводности и рассеяния в твердых телах.

Модель кристалла металла может быть представлена в качестве совокупности гармонически взаимодействующих осцилляторов, при этом максимально большой вклад в их среднюю энергию обеспечат низкочастотные колебания, соответствующие тем упругим волнам, квантами которых являются фононы.

К наиболее важным приложениям квантовой статистики Бозе ученые относят теорию излучения абсолютно черного тела. Данная теория основывается на представлениях о фотонах, которые являются квантами электромагнитного поля.

Металлы Яна — Теллера

Металлы Яна — Теллера — это новейшее дитя в мире состояний вещества, поскольку ученым удалось успешно создать их впервые лишь в 2015 году. Если эксперименты подтвердятся другими лабораториями, эти металлы могут изменить мир, так как они обладают свойствами как изолятора, так и сверхпроводника.

Ученые во главе с химиком Космасом Прассидесом экспериментировали, вводя рубидий в структуру молекул углерода-60 (в простом народе известных под фуллеренами), что приводило к тому, что фуллерены принимают новую форму. Этот металл назван в честь эффекта Яна — Теллера, который описывает, как давление может изменять геометрическую форму молекул в новых электронных конфигурациях. В химии давление достигается не только за счет сжатия чего-то, но и за счет добавления новых атомов или молекул в ранее существовавшую структуру, изменяя ее основные свойства.

Когда исследовательская группа Прассидеса начала добавлять рубидий в молекулы углерода-60, молекулы углерода изменялись от изоляторов к полупроводникам. Тем не менее из-за эффекта Яна — Теллера молекулы пытались остаться в старой конфигурации, что создавало вещество, которое пыталось быть изолятором, но обладало электрическими свойствами сверхпроводника. Переход между изолятором и сверхпроводником никогда не рассматривался, пока не начались эти эксперименты.

Интересно в металлах Яна — Теллера то, что они становятся сверхпроводниками при высоких температурах (-135 градусов по Цельсию, а не при 243,2 градуса, как обычно). Это приближает их к приемлемым уровням для массового производства и экспериментов. Если все подтвердится, возможно, мы будем на шаг ближе к созданию сверхпроводников, работающих при комнатной температуре, что, в свою очередь, произведет революцию во многих отраслях нашей жизни.

Жидкость

Если температура твердого тела повышена, вероятно, что оно потеряет свою форму. пока его хорошо организованная атомная структура полностью не исчезнет, ​​превратившись в жидкость.

Жидкости обладают способностью течь, потому что их атомы, хотя и продолжают образовывать организованные молекулы, они не так близки друг к другу, у них больше свободы передвижения.

H2O в жидком состоянии — это обычная вода.

В жидком состоянии вещества обладают следующими характеристиками:

  • Меньше сплоченности.
  • У них нет конкретной формы.
  • Беглость.
  • Мало сжимаемый
  • Перед простудой они сжимаются.
  • Они могут представлять собой диффузию.

Теория[]

Замедление атомов с использованием охлаждающей аппаратуры позволяет получить сингулярное квантовое состояние, известное как конденсат Бозе, или Бозе — Эйнштейна. Это явление было предсказано в 1925 г. А. Эйнштейном, как результат обобщения работы Ш. Бозе, где строилась статистическая механика для частиц, начиная от безмассовых фотонов до обладающих массой атомов (рукопись Эйнштейна, считавшаяся утерянной, была обнаружена в библиотеке Лейденского университета в 2005 г.). Результатом усилий Бозе и Эйнштейна стала концепция Бозе газа, подчиняющегося статистике Бозе — Эйнштейна, которая описывает статистическое распределение тождественных частиц с целым спином, называемых бозонами. Бозоны, которыми являются, например, и отдельные элементарные частицы — фотоны, и целые атомы, могут находиться друг с другом в одинаковых квантовых состояниях. Эйнштейн предположил, что охлаждение атомов — бозонов до очень низких температур заставит их перейти (или, по-другому, сконденсироваться) в наинизшее возможное квантовое состояние. Результатом такой конденсации станет возникновение новой формы вещества.

Этот переход возникает ниже критической температуры, которая для однородного трёхмерного газа, состоящего из невзаимодействующих частиц без каких-либо внутренних степеней свободы, определяется формулой

Tc=(nς(32))23h22πmkB,{\displaystyle T_{c}=\left({\frac {n}{\varsigma \left({3/2}\right)}}\right)^{2/3}{\frac {h^{2}}{2\pi mk_{B}}},}

где Tc{\displaystyle T_{c}} — критическая температура, n{\displaystyle n} — концентрация частиц, m{\displaystyle m} — масса, h{\displaystyle h} — постоянная Планка, kB{\displaystyle k_{B}} — постоянная Больцмана, ς{\displaystyle \varsigma } — Дзета-функция Римана  ς(32)=2,6124….{\displaystyle ~\left[\varsigma \left({3/2}\right)=2,6124…\right].}

Вырожденный газ

Хотя аморфные твердые вещества хотя бы встречаются на планете Земля, вырожденное вещество встречается лишь в определенных типах звезд. Вырожденный газ существует, когда внешнее давление вещества определяется не температурой, как на Земле, а сложными квантовыми принципами, в частности принципом Паули. Из-за этого внешнее давление вырожденного вещества будет сохраняться, даже если температура вещества упадет до абсолютного нуля. Известны два основных типа вырожденного вещества: электронно-вырожденное и нейтронно-вырожденное вещество.

Электронно-вырожденное вещество существует в основном в белых карликах. Оно образуется в ядре звезды, когда масса вещества вокруг ядра пытается сжать электроны ядра до низшего энергетического состояния. Однако в соответствии с принципом Паули, две одинаковых частицы не могут быть в одном энергетическом состоянии. Таким образом, частицы «отталкивают» вещество вокруг ядра, создавая давление. Это возможно только если масса звезды меньше 1,44 массы Солнца. Когда звезда превышает этот предел (известный как предел Чандрасекара), она просто коллапсирует в нейтронную звезду или в черную дыру.

Когда звезда коллапсирует и становится нейтронной звездой, у нее больше нет электронно-вырожденного вещества, она состоит из нейтронно-вырожденного вещества. Поскольку нейтронная звезда тяжелая, электроны сливаются с протонами в ее ядре, образуя нейтроны. Свободные нейтроны (нейтроны не связаны в атомном ядре) имеют период полураспада в 10,3 минуты. Но в ядре нейтронной звезды масса звезды позволяет нейтронам существовать за пределами ядер, образуя нейтронно-вырожденное вещество.

Другие экзотические формы вырожденного вещества также могут существовать, в том числе и странная материя, которая может существовать в редкой форме звезд — кварковых звезд. Кварковые звезды — это стадия между нейтронной звездой и черной дырой, где кварки в ядре развязаны и образуют бульон из свободных кварков. Мы пока не наблюдали такой тип звезд, но физики допускают их существование.

Понравилась статья? Поделиться с друзьями:
Центр образования
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: