Основы астрономии: чем отличается звезда от планеты?

Самые большие объекты во вселенной

Звезда ван Маанена

Звезда ван Маанена

«Одиссей» выходит на орбиту Звезды ван Маанена, ближайшего белого карлика в 14,1 световых годах от Солнца. Удручающее зрелище. Мы видим своего рода «труп» — остатки проэволюционировавшего светила. Размеры белых карликов не превышают одной сотой Солнечной, а масса сопоставима с ним. Белый карлик — это тусклое ядро погибшей звезды, которое светит лишь за счет остывания своего плазменного вещества. Между белыми карликами и нашим Солнцем есть один из самых крупных по численности составляющих звезд класс — красные карлики. Команда компьютеру, и мы в мгновение оказываемся на орбите Проксимы Центавра.

Проксима Центавра

Небольшой красной звезде, понуро светящейся в безграничном космосе. Размеры и масса таких звезд не превышает лишь трети, а светимость в тысячи раз меньше Солнечной.

Сравнительные размеры

По мнению многих астрономов красные карлики составляют самый многочисленный класс «настоящих» звезд во Вселенной. Дело в том, что все вышеперечисленные звезды, на самом деле по-настоящему ими не являются. Только в красных карликах проходят классические протонные термоядерные реакции, позволяющие им существовать сотни миллиардов лет.

Эта невзрачная звезда, очень вероятно, намного переживет Солнце, и если человечество захочет найти в космосе звезду, что сможет нас приютить после гибели родной звезды, то далеко ходить не придется. По меркам космоса, конечно.

Рейтинг самых крупных звезд в галактике

VY Большого Пса

Этот красный гигант расположен в одноименном созвездии и многократно превосходит по размерам остальных конкурентов. Радиус этой звезды больше земного в 1800 раз, а весит она в 25 раз больше Солнца. На сегодняшний день ученым-астрологам не известна ни одна другая такая крупная звезда. Нет в галактике и аналогов VY Большого Пса по яркости. Для большего понимания: она ярче нашего Солнца в 270 тысяч раз. Если заменить Солнце на эту звезду, то по своему диаметру она займет место от центра до Сатурна. От Земли VY Большого Пса находится на расстоянии 5000 световых лет.

Мю-Цефей

Мю Цефей — ещё один красный супергигант из созвездия Цефея. На сегодняшний день — это одна из самых ярких и крупных звёзд на просторах Млечного пути. Мю Цефей находится в 6000 световых лет от Земли, а его размеры в 20 раз больше солнечных. Звезда в 38 тысяч раз ярче Солнца, а не радиус составляет 988036000 км. Жизнь Мю Цефея подходит к концу, звезда находится в последней фазе своего существования и может переродиться как сверхновая.

Антарес

Антарес — ярчайшая звезда в созвездии Скорпиона. Его масса больше солнечной в 12 раз, а размеры больше в 850 раз. Если поместить Антарес в центр Солнечной системы, то он достиг бы орбиты Марса. Расстояние от Земли — 550 световых лет. Антаресу уже 12 миллионов лет, и он уже «старичок». Ученые прогнозируют, что в ближайшие миллионы лет он взорвется сверхновой.

Ригель

Ригель — яркая звезда в созвездии Орион. Лучше всего заезда видна зимой в северном полушарии и летом — в южном. Ригель ярче Солнца в 12 000 раз и находится на удалении от Земли в 860 световых лет. Масса Ригеля больше солнечной в 24 раза. Ученые полагают, что звезда тратит слишком много энергии, из-за чего долго она не просуществует.

Арктур

Этот красный гигант — самая яркая звезда в созвездии Волопаса. Расстояние от Арктура до Земли составляет 38 световых лет. Звезда в 25 раз больше Солнца, а температура ее поверхности составляет 4000 градусов. Возраст Арктура — 7 100 000 000 лет. Звезда продолжает расширяться, а после того, как гелий будет исчерпан, отслоится от белой оболочки и превратится в белого карлика.

Бетельгейзе

Бетельгейзе — вторая по яркости звезда в созвездии Ориона. Этот красный сверхгигант почти так же заметен на ночном небе, как Сириус. Масса звезды больше солнечной в 20 раз, радиус — в 1200 раз больше, а находится она на расстоянии 640 световых лет от Земли. Скоро Бетельгейзе закончит свой жизненный цикл.

Полярная А

Полярная А — светило, расположенное в тройной пульсирующей звездной системе. Полярная звезда находится недалеко от Земли и очень хорошо видна невооруженным глазом. По величине она превосходит Солнце в 2000 раз, а по размерам — в 6,5 раз. Возраст звезды составляет 60-65 миллионов лет.

Альдебаран

Альдебаран — оранжевый гигант в созвездии Тельца. Он сравнительно недалек от Земли — всего в 65 световых годах. Радиус Альдебарана составляет приблизительно 30700 км, что больше солнечного в 44 раза. Температура поверхности около 3600 градусов Цельсия. Альдебаран ярче Солнца в 425 раз.

VV Цефея

Звезда расположена в 5000 световых лет от Земли и находится в созвездии Цефея. Она относится к категории красных супергигантских небесных тел и превосходит Солнце в 1100 раз. Звёзды-гипергиганты очень редки и обычно сопровождаются компаньонами — более холодными звёздами.

Поллукс

Поллукс — самая яркая звезда в созвездии Близнецы. Этот оранжевый гигант находится на расстоянии 34 световых года от Земли. Звезда больше Солнца в 9 раз, а ярче в 2 раза. Температура поверхности — 4 600 градусов Цельсия.

Эволюция звезд с малой массой

Пройдя стационарный период, который соответствует фазе главной последовательности, звезда начинает терять свою стабильность, и дальнейшая судьба у нее может быть различной.

Рассмотрим случай звезды маленькой массы, то есть имеющей массу в 4—5 раз меньше солнечной. Ее особенность такова: в самых глубоких слоях отсутствует конвекция, то есть материя, из которой она состоит, не столь активна, как это, напротив, имеет место у звезд большой массы.

Это означает, что, когда водород в ядре начинает иссякать, реакция не перемещается к более верхним слоям, а продолжает происходить вокруг ядра, где водород очень медленно превращается в гелий.

Однако ядро гелия раскаляется, верхние слои звезды упорядочиваются, перестраивая свою структуру, а светило на диаграмме Герцшпрунга — Рессела медленно покидает главную последовательность. Плотность материи в центре звезды увеличивается, а вещество в ядре вырождается, то есть приобретает особую консистенцию, отличную от консистенции обычного вещества.

Планетарная туманность М27 Гантель: яркий «пузырь» – сброшенная оболочка звезды

Звезда на диаграмме Герцшпрунга — Рессела смещается вправо, а затем вверх, двигаясь в область красных гигантов. Ее размеры значительно увеличиваются, а температура внешних слоев уменьшается благодаря эффекту расширения.

А вот температура ядра снижается, поэтому ядерная реакция уже не может идти из-за того, что температура недостаточна для синтеза гелия. Подобный синтез сопровождается так называемой вспышкой гелия. Звезда на диаграмме продолжает перемещаться вправо, в то место, где на оси абсцисс диаграммы находятся шаровые скопления.

В углеродном ядре температура растет до момента, когда, если звезда обладает достаточной массой, углерод начинает гореть, а затем взрывается. Происходит это или нет, во время последней стадии материя поверхности звезды теряет массу. Эта потеря может происходить на разных фазах или единовременно, когда верхние слои звезды стремятся наружу, образовывая большой шар.

В последнем случае образуется планетарная туманность, то есть сферическая оболочка материи, распространяющаяся в космос Ядро звезды, если при последующих сжатиях и расширениях оно испускает количество материи, превышающее 1,4 солнечной массы, становится белым карликом, из чего можно сделать вывод о ее медленном угасании.

Считается, что, поскольку охлаждение идет очень медленно, с рождения Вселенной ни один белый карлик еще не дошел до термической смерти.

Конечная стадия эволюции звезд, масса которых равна или меньше солнечной – звезда типа белый карлик.

Типы звезд: гигантские и сверхгигантские звезды

Гиганты и сверхгиганты образуются, когда у звезды заканчивается водород и начинается сжигание гелия.

Это самые большие звезды во Вселенной.

По мере того, как ядро звезды сжимается и нагревается, возникающее в результате тепло впоследствии заставляет внешние слои звезды расширяться наружу.

Звезды с малой или средней массой превращаются в красных гигантов, а звезды с большой массой, примерно в 10+ раз больше, чем Солнце, становятся красными сверхгигантами.

Звезда может сжаться и стать голубым сверхгигантом в периоды медленного синтеза.

Синий цвет обычно присутствует, когда температура распределяется по небольшой площади поверхности, что делает их более горячими.

Также могут возникать колебания между красным и синим.

Синий гигант

Голубые гиганты очень редки, потому что они развиваются только из более массивных и менее распространенных звезд, а также потому, что у них короткая жизнь.

Звезды с классами светимости III и II (яркий гигант и гигант) называются голубыми гигантами.

Их спектральные классы — O, B и A.

Термин «голубой гигант» относится к множеству звезд, находящихся на разных стадиях развития.

Это эволюционировавшие звезды, которые переместились с главной последовательности, но имеют мало общего.

Однако настоящие голубые гиганты имеют температуру выше 10 000 К.

Температура голубого гиганта может варьироваться вплоть до 33 000+ К, а светимость примерно в 1000 раз больше, чем у Солнца.

Они имеют массу от 2 до 150 масс нашего Солнца и обычно существуют от 10 до 100 миллионов лет.

Примерами голубого гиганта являются «Мейсса» и «Йота Орионис».

Синий сверхгигант

Голубые сверхгиганты также редки.

В науке они известны как сверхгиганты OB и обычно имеют классификацию светимости I и спектральную классификацию B9 или более раннюю.

Обычно они крупнее Солнца, но меньше красных сверхгигантов с массой от 10 до 100 масс Солнца.

Голубые сверхгиганты имеют температуру от 10 000 до 50 000 К и светимость от 10 000 до 1 миллиона раз больше, чем у Солнца.

Они живут очень короткой жизнью, около 10 миллионов лет.

Из-за своей массы голубые сверхгиганты быстро сжигают запасы водорода.

Некоторые звезды эволюционируют непосредственно в звезды Вольфа-Райе (Wolf-Rayet), перескакивая через обычную фазу голубого сверхгиганта.

Примерами голубого сверхгиганта являются «Ригель» и «Тау Большого Пса».

Красный гигант

Красные гиганты относятся к спектральным классам M и K, они намного меньше красных сверхгигантов и гораздо менее массивны.

Когда звезда израсходовала свой запас водорода в своем ядре, синтез прекращается, и звезда больше не создает внешнее давление, чтобы противодействовать внутреннему давлению, стягивающему ее.

Поэтому водородная оболочка вокруг ядра воспламеняется, продолжая жизнь звезды, но заставляя ее резко увеличиваться в размерах.

Это то, что создает красный гигант.

Красные гиганты могут быть в 100 раз больше, чем была звезда в фазе своей главной последовательности.

Когда это водородное топливо израсходовано, в реакциях термоядерного синтеза могут быть израсходованы дополнительные оболочки гелия и даже более тяжелых элементов.

Обычно они имеют температуру от 3300 до 5300 К и светимость от 100 до 1000 раз больше, чем у Солнца.

Они также имеют массу от 0,3 до 10 масс Солнца.

Красные гиганты живут от 0,1 до 2 миллиардов лет, прежде чем у них полностью закончится топливо и они станут белыми карликами.

Примерами красного гиганта являются «Альдебаран» и «Арктур».

Красный сверхгигант

Красные сверхгигантские звезды — это звезды, которые исчерпали свой запас водорода в своих ядрах, и поэтому их внешние слои сильно расширяются по мере того, как они эволюционируют от главной последовательности.

Они относятся к спектральным классам K и M и являются одними из самых больших звезд во Вселенной, хотя и не самыми массивными или яркими.

Они имеют температуру от 3500 до 4500 К и светимость от 1000 до 800000 раз больше, чем у Солнца.

Красные сверхгиганты имеют массу от 10 до 40 масс Солнца и живут от 3 до 100 миллионов лет.

Некоторые красные сверхгиганты, которые все еще могут создавать тяжелые элементы, в конечном итоге взрываются как сверхновые II типа.

Примерами красного сверхгиганта являются «Антарес» и «Бетельгейзе».

Термоядерные реакции

Звезду можно представить как гигантский ядерный очаг. Термоядерная реакция внутри нее превращает водород в гелий в ходе слияния (синтеза) ядер водорода, благодаря чему рождается столь необходимая для звезды энергия. Атомные ядра водорода — протоны — объединяются в ядра атомов гелия с двумя нейтронами. Однако протоны — электрически заряженные элементарные частицы, которые при приближении отталкиваются друг от друга. Так что из двух протонов новое ядро не построишь. Нужен какой-то элемент, причем более крепкий, чем силы электрического отталкивания. Эту роль в атомных ядрах играет другая ядерная частица — нейтрон.

Ядро обычного атома водорода имеет всего один протон. Но у его разновидностей — дейтерия и трития — в ядрах кроме одного протона имеется и нейтрон: у дейтерия один, а у трития два. Оба они также присутствуют в недрах звезд.

Атом дейтерия соединяется с атомом трития, образуя атом гелия и свободный нейтрон. Именно из гелия и формируется ядро звезды. В нем также содержатся более тяжелые химические элементы (например, железо), которые были захвачены из «материнской» туманности или же образуются во время термоядерных реакций. В результате этого процесса высвобождается огромное количество энергии.

Скорость протекания ядерного синтеза пропорциональна массе звезды в четвертой степени. Это значит, что если масса одной звезды больше массы второй в два раза, то на первой ядерное топливо горит в 16 раз (2 в четвертой степени) раз быстрее.

Следовательно, массивные звезды сгорают быстрее. Самые тяжелые сжигают весь водород за несколько сотен тысяч лет, а легкие красные звезды могут «тлеть» несколько миллиардов лет.

Если говорить о возрасте, то молодыми считаются звезды очень большой массы и очень высокой светимости, то есть те, которые излучают энергии во много раз больше, чем Солнце. Они гораздо моложе нашего светила, потому что столь интенсивно теряют энергию, что в состоянии существовать только сравнительно короткое по астрономическим масштабам время. Недавно возникшие звезды — это, прежде всего, гигантские горячие звезды голубоватого цвета, так называемые голубые сверхгиганты.

  • Звездные карты: как найти объект на небе
  • Красные гиганты, белые карлики, пульсары
  • Нейтронные звезды, или пульсары

Поделиться ссылкой

Звезда KY Лебедя

KY Лебедя — звезда, которая находится в созвездии Лебедь на расстоянии около 5153 световых лет от нас. Это одна из самых крупных звёзд, известных науке. KY Лебедя представляет собой гипергигант, радиус которого равен 1420 солнечных. Масса звезды превышает солнечную в 25 раз. Этот гипергигант в 270 000–1 100 000 раз ярче нашего Солнца. KY Лебедя является примером пограничной звезды, т.к. если бы светимость была меньше, то объект уже не являлся гипергигантом. Но при светимости в 1 100 000 солнечных размер оценивается в 2850 радиусов Солнца.


Сравнение звезды KY Лебедя с орбитой Юпитера.

Если звезду KY Лебедя поместить в центр нашей системы, то она бы вышла за пределы орбиты Юпитера и поглотила его вместе со всеми спутниками.

VY Большого Пса

Диаметр VY Большого Пса, тем не менее, по некоторым данным, оценивается в 1800-2100 солнечных, то есть это один из рекордсменов среди всех прочих красных гипергигантов. Окажись эта звезда в центре Солнечной системы, она поглотила бы все планеты, вместе с Сатурном. Предыдущие кандидаты на звание самых больших звёзд во Вселенной тоже вместились бы в неё полностью.

Свету достаточно всего 14.5 секунд, чтобы обогнуть наше Солнце полностью. Чтобы обогнуть VY Большого Пса, свету пришлось бы лететь 8.5 часов! Если бы вы решились на такой облет вдоль поверхности на истребителе, со скоростью 4500 км/ч, то такое безостановочное путешествие заняло бы 220 лет.

Сравнение размеров Солнца и VY Большого Пса.

Эта звезда еще вызывает массу вопросов, так как точный её размер установить сложно из-за размытой короны, которая имеет гораздо меньшую плотность, чем солнечная. Да и сама звезда имеет плотность в тысячи раз меньше, чем плотность воздуха, которым мы дышим.

Кроме того, VY Большого Пса теряет своё вещество и образовала вокруг себя заметную туманность. В этой туманности, возможно, теперь даже больше вещества, чем в самой звезде. К тому же она нестабильная, и в ближайшие 100 тысяч лет взорвется гиперновой. К счастью, до неё 3900 световых лет, и Земле этот страшный взрыв не угрожает.

Эту звезду можно найти на небе в бинокль или в небольшой телескоп – её яркость меняется от 6.5 до 9.6 m.

Антарес

Туманность рядом с Антаресом и Ро Змееносца

На просторах бесконечного космоса есть настоящие мастодонты в виде сверхгигантов. Покорный «Одиссей» переносит нас на высокую орбиту Антареса, ярчайшей звезды в созвездии скорпиона, в 600 световых годах от Солнца. Чтобы лучшее ее рассмотреть просим компьютер перейти на расстояние в 1,4 астрономических единицы от ядра, так сказать с запасом. Но система протестует, уверяя нас, что мы окажемся под поверхностью звезды. Да как так? Мы же будем на уровне эквивалента орбиты Марса от ядра Антареса. Но оказывается, что радиус красных сверхгигантов превышает Солнечный порой в 800 раз. Но масса Антареса всего лишь в 12,4 раза больше Солнечной, его газ очень разряжен.

Какого размера самые большие звёзды

На диаграмме Герцшпрунга-Рассела самые большие звёзды расположены в правой верхней части. И мы видим, что они называются гипергигантами. Это на самом деле монстры в мире звёзд. Типичный гипергигант в 100-120 раз тяжелее Солнца, а по размеру в тысячи раз больше его.

Ещё недавно самым большим гипергигантом считалась звезда UY Щита – она в 1900 раз больше Солнца в максимальном расширении. Дело в том, что она пульсирует, поэтому размер её меняется. Внутрь этого монстра влезло бы 5 миллиардов таких звёзд, как Солнце, а диаметр измеряется в 2.4 миллиардов километров.

Звезда Стивенсон 2-18 по сравнению с Солнцем огромна.

Но сейчас лидер среди всех – Стивенсон 2-18 – красный гипергигант, который ещё больше, чем UY Щита. Находится в том же созвездии. Он в 2158 раз больше Солнца – 3 миллиарда километров в поперечнике! Это 10 астрономических единиц, то есть в 10 раз больше, чем расстояние от Земли до Солнца. Если бы эта звезда оказалась вместо Солнца, поверхность её оказалась бы чуть дальше орбиты Сатурна. Благодаря огромной площади поверхности, эта звезда излучает, как 440 000 Солнц.

Звезда ван Маанена

«Одиссей» выходит на орбиту Звезды ван Маанена, ближайшего белого карлика в 14,1 световых годах от Солнца. Удручающее зрелище. Мы видим своего рода «труп» — остатки проэволюционировавшего светила. Размеры белых карликов не превышают одной сотой Солнечной, а масса сопоставима с ним. Белый карлик — это тусклое ядро погибшей звезды, которое светит лишь за счет остывания своего плазменного вещества. Между белыми карликами и нашим Солнцем есть один из самых крупных по численности составляющих звезд класс — красные карлики. Команда компьютеру, и мы в мгновение оказываемся на орбите Проксимы Центавра.

Небольшой красной звезде, понуро светящейся в безграничном космосе. Размеры и масса таких звезд не превышает лишь трети, а светимость в тысячи раз меньше Солнечной.

По мнению многих астрономов красные карлики составляют самый многочисленный класс «настоящих» звезд во Вселенной. Дело в том, что все вышеперечисленные звезды, на самом деле по-настоящему ими не являются. Только в красных карликах проходят классические протонные термоядерные реакции, позволяющие им существовать сотни миллиардов лет.

Эта невзрачная звезда, очень вероятно, намного переживет Солнце, и если человечество захочет найти в космосе звезду, что сможет нас приютить после гибели родной звезды, то далеко ходить не придется. По меркам космоса, конечно.

Так звезда или нет?

И так, наш «Одиссей» выходит на орбиту двойной звезды Глизе 229. Она находится всего в 19 световых годах от Солнца. Нас интересует Глизе 229 В, объект внешне меньше даже Юпитера. Мы задаем параметры в компьютер для выхода на орбиту. Но вдруг внезапно автопилот предупреждает нас, что корабль стремительно падает и введенные вручную данные ложны. Компьютер спешно корректирует тягу, да не чуть-чуть, а в разы. Вскоре выясняется, что Глизе 229 В хоть и меньше по геометрическим размерам чем Юпитер, но в 25 раз его тяжелее.

Glize 229 b

До настоящего момента идут споры, относить ли к звездам непонятные объекты, подобные коричневым карликам? В наши дни под ними подразумевают водородную субзвезду с размерами в диапазоне от 0,012 до 0,0767 масс Солнца. Они сопоставимы с размерами Юпитера. В недрах коричневых карликов идут термоядерные процессы, так же, как и в звездах. Но выделение тепла идет в основном за счет реакции слияния изотопов легких ядер таких как литий, бериллий, бор, дейтерий. Вклад классического протонного термоядерного синтеза в общее тепловыделение невелико. Считается, что на коричневые карлики приходится большая часть звезд в космосе. Некоторые астрономы считают, что немаленькая доля темной материи может приходиться как раз на коричневые карлики. Ну что ж, летим дальше!

Как становятся звездами Вольфа-Райе?

В статье уже не раз упоминалось о том, что звезда WR — это эволюционный этап светила, к которому приходят звезды разных классов и происхождения. Посмотрим же, как именно можно стать звездой Вольфа-Райе.

Гигант однажды — гигант навсегда

Существует распространенное заблуждение о том, что звезды, в которых выгорел водород, после стадии красного гиганта незамедлительно взрываются. На самом деле, сверхновая случается сразу же только у достаточно легких звезд. Светила массивнее развиваются иначе — после того, как в них загорается гелий, — они подходят к своему пределу Роша и сбрасывают остаточную оболочку из водорода. Остается горящее ядро из гелия и тяжелых веществ, которое становится самостоятельным светилом — звездой Вольфа-Райе.

Такие звезды WR обычно создают вокруг себя яркую туманность. Ее питают отторгнутые звездой слои вместе с ежегодными выбросами вещества, интенсивность которых может превышать половину массы Солнца ежегодно. Поэтому туманности около звезд Вольфа-Райе получаются достаточно крупными — их масса порой превышает 20 солнечных.

Звезда Вольфа-Райе (белая посередине, с фиолетовой аурой) и окружающая ее туманность

По праву рождения

Некоторые светила считаются звездами Вольфа-Райе даже тогда, когда они находятся на Главной последовательности. Это сверхтяжелые и очень яркие звезды, находящиеся в левом верхнем углу диаграммы Герцшпрунга-Рассела.

Их масса порождает высокую энергию (вспомните про сочетание протон-протонного и CNO-циклов ядерного синтеза!), которая поднимает тяжелые элементы из глубин звезды и создает сильный звездный ветер. Эти звезды являются самыми массивными, так как обладают всей своей первоначальной массой и  необязательно погибают, будучи звездой Вольфа-Райе. После растраты водородного запаса они могут превратиться в голубого сверхгиганта или переродиться в другую форму звезды WR по сценарию красных гигантов, описанному выше.

Эстафета между соседями

Часто звезды Вольфа-Райе встречаются в двойных звездных системах. Это случается тогда, когда изначально одно из светил тяжелее второго — тогда звезды увлекаются в короткий, но занимательный процесс взаимообмена веществом.

Все начинается с того, что более массивная звезда в системе развивается быстрее. Когда водород в ее ядре исчерпывается. и внешние слои начинают расширяться, звезда-сосед захватывает инициативу — за каких-то 100 тысяч лет к нему притягивается больше половины вещества массивного светила. От «старшей» звезды остается только пламенеющее ядро с гелиевой поверхностью — как мы уже знаем, типичная звезда Вольфа-Райе.

Черная дыра от старшей звезды WR перетягивает вещество от соседа, превращая его в звезду Вольфа-Райе

Дальше светило WR развивается по уже описанному сценарию — быстро растрачивает свою массу и коллапсирует в нейтронную звезду или черную дыру. Возросшее гравитационное влияние позволяет вернуть «украденное» соседом — и так как водородная оболочка «младшей» звезды переходит к новообразованному объекту, она сама становится звездой Вольфа-Райе. Остатки старого светила и звездный ветер от новообразованной звезды WR создает туманность, которой движением объектов системы придается кольцеобразная форма.

Размеры, масса и светимость звезд

Размеры и масса даже небольших звезд огромны. Например, Солнце в 109 раз больше Земли по диаметру
и в 330000 раз массивнее нашей планеты!
Чтобы заполнить объем, который занимает в пространстве Солнце, нам потребовалось бы больше миллиона планет размером с Землю!

Сравнительные размеры Солнца и планет Солнечной системы. Земля на этой картинке — крайняя левая планета в первом, ближайшем ряду.

Но мы уже знаем, что Солнце обычная, средняя звезда. Есть звезды гораздо крупнее Солнца, как, например, звезда Сириус
, самая яркая звезда ночного неба. Сириус в 2 раза массивнее Солнца и в 1,7 раза больше его по диаметру. Он также излучает в 25 раз больше света, чем наша дневная звезда!

Другой пример — звезда Спика
, возглавляющая созвездие Девы. Ее масса в 11 раз больше Солнца, а светимость в 13000 раз выше! Вряд ли возможно даже представить себе испепеляюще мощное излучение этой звезды!

Но большинство звезд во Вселенной все-таки меньше Солнца. Они легче и светят гораздо слабее, чем наша звезда. Самые распространенные звезды называются красными карликами
, так как излучают в основном красный свет. Типичный красный карлик примерно в 2-3 раза легче Солнца, в 4 или даже 5 раз меньше его по диаметру и в 100 раз тусклее, чем наша звезда.

В нашей галактике порядка 700 миллиардов звезд. Из них не меньше 500 миллиардов окажется красными карликами. Но, к несчастью, все красные карлики настолько тусклые, что ни один из них не виден на небе невооруженным глазом! Чтобы наблюдать их, нужен телескоп или хотя бы бинокль.

От самых маленьких

Размеры звезд Млечного пути

Зададимся вопросом, какие же размеры имеют самые маленькие члены этого класса космических объектов? Мы даем команду бортовому компьютеру лететь к ближайшей нейтронной звезде. Гиперскачок и вуаля, мы подлетаем к крохотной звезде со странным названием — RX J1856.5-3754.

RX J1856.5-3754 рентгеновский снимок телескопа Чандра

«Одиссей» завис высоко над поверхностью крохи, которая имеет диаметр всего 10-20 километров, но наши двигатели неистово набирают скорость, а информация с экранов говорит, будто мы на орбите Солнца! И здесь нас ждет первая неожиданность! Наименьшие представители звездного семейства, имеют диаметр порядка 15 километров. Но их масса превышает Солнечную. Только представьте, сколь плотным объектом будет нейтронная звезда. После элементарных математических расчетов становится ясно, что компактность упаковки вещества там превышает таковую атомного ядра.

Открытие и исследования звезды

Путь R136a1 и является ярчайшей звездой, громадное расстояние долгое время скрывало ее от человеческих глаз. Большое Магелланово Облако известно людям уже больше 500 лет, а туманность Тарантул распознали еще в 1751 году. Но открыть скопление R136а удалось только в 1979 году — и то с помощью монструозного 3,6 метрового телескопа ESO в Чили.

Высокая яркость сектора сразу привлекла внимание астрономов. Было ясно, что обычные, путь и сильно светящие звезды, не смогут произвести столько энергии

Вдохновленные аномальной яркостью скопления R136а, некоторые астрономы делали заявления о возможности существования звезды, масса которой доходит до 3000 масс Солнца. До изобретения первых орбитальных телескопов, это было хоть и невероятным, но логичным объяснением.

3,6 метровый телескоп ESO

Выделить R136a1 среди других звезд скопления удалось только в 90-х годах ХХ столетия — при помощи орбитального телескопа «Хаббл». Однако рекордные показатели массы и светимости звезды стали известными только в 2010 году, после длительных съемок звездного скопления. До этого постоянные пересечения с другими космическими объектами мешали заметить R136a1 на фоне других светил.

Солнце

Конечно же, в первую очередь нам нужно обратить внимание на Солнце. Ведь это ближайшая к нам звезда, к тому же лучше всех изученная и измеренная

Да и все прочие по размеру и по массе обычно сравнивают с Солнцем – оно служит неким эталоном.

Итак, Солнце – типичный жёлтый карлик, каких очень много даже в нашей галактике Млечный Путь. На небе мы его видим такого же размера, как и Луну, но в реальности оно, конечно, гораздо больше. Его диаметр по экватору – примерно 1 392 700 километров. Радиус, соответственно, вдвое меньше – почти 700 тысяч километров.

Размеры Солнца в сравнении с планетами Солнечной системы.

Надо заметить, что звёзды имеют большую массу и быстро вращаются, отчего немного сплюснуты между полюсами. Поэтому радиус звезды по экватору всегда несколько больше, чем по полюсам.

Что интересно – если по диаметру Солнца выставить такие планеты, как Земля, то их влезет в ряд 109 штук. А если насыпать внутрь, то в Солнце вместится 1 301 019 таких планет.

Теперь вы понимаете, насколько огромно Солнце, хотя оно и относится всего лишь к жёлтым карликам и по сути не представляет из себя ничего выдающегося – обычная рядовая звезда. Но ведь тем интереснее посмотреть на размеры других звёзд!

Антарес

Туманность рядом с Антаресом и Ро Змееносца

На просторах бесконечного космоса есть настоящие мастодонты в виде сверхгигантов. Покорный «Одиссей» переносит нас на высокую орбиту Антареса, ярчайшей звезды в созвездии скорпиона, в 600 световых годах от Солнца. Чтобы лучшее ее рассмотреть просим компьютер перейти на расстояние в 1,4 астрономических единицы от ядра, так сказать с запасом. Но система протестует, уверяя нас, что мы окажемся под поверхностью звезды. Да как так? Мы же будем на уровне эквивалента орбиты Марса от ядра Антареса. Но оказывается, что радиус красных сверхгигантов превышает Солнечный порой в 800 раз. Но масса Антареса всего лишь в 12,4 раза больше Солнечной, его газ очень разряжен.

Классификация звёзд

Чтобы лучше понять, о чём вообще речь, полезно сначала взглянуть на так называемую диаграмму Герцшпрунга-Рассела. Здесь учёные распределили известные звёзды в зависимости от их температуры и светимости.

Диаграмма Герцшпрунга-Рассела

И обнаружилось, что звёзды образовали отдельные группы, и в этих группах чётко прослеживается и зависимость от размера. Так, белые карлики стоят отдельно, а гиганты и сверхгиганты образовали собственные группы.

Но есть на этой диаграмме ещё и так называемая Главная Последовательность – диагональная полоса, в центре которой находится и наше Солнце. Сюда относится больше всего звёзд – они обычные, ничем особым не примечательные, этакие «середнячки». Нас же больше интересует нижняя и верхняя области диаграммы, где сосредоточены самые маленькие и самые большие звёзды.

На этой схеме показаны некоторые звёзды.

Кроме того, есть еще один очень любопытный тип звёзд – нейтронные, размер которых заслуживает внимания.

Звезда VX Стрельца

VX Стрельца — красный сверхгигант или красный гипергигант. Это переменная звезда, расположенная в созвездии Стрельца. VX Стрельца является полуправильной переменной звездой. Очень яркий сверхгигант. Исследования показали, что звезда постепенно теряет свою массу из-за звездного ветра. Температура на поверхности колеблется приблизительно от 2 950 до 3 150 ºС. Астрономы определили точное расстояние до этой звезды — 1560 пк, а это приблизительно 5100 световых лет. Судя по всему, звезда содержит оксид ванадия и циан.


VX Стрельца и орбита Юпитера.

VX Стрельца — одна из самых больших изученных звёзд, уступающая по размерам главным образом звезде UY Щита. Её радиус составляет примерно 1120—1550 солнечных радиусов. Более старые оценки дают от 1350 до 1940 солнечных радиусов.

Что в итоге?

Подводя итог важно отметить, что как масса, так и геометрические размеры звезд могут сильно отличаться. Одни обладают невообразимой плотностью, другие же наоборот, сильно разряжены

Звезды очень разнятся по светимости и цвету, температуре и срокам жизни. На размер звезд влияет сочетание двух сил — сила тяготения, что пытается сжать звезду, и давление разогретого внутри газа. В настоящее время теория эволюции звезд далека от своего совершенства.

Диаграмма Герцшпрунга — Рассела

Астрофизики не могут дать внятного ответа на банальный вопрос: «А на сколько большой и массивной может быть звезда?».

Понравилась статья? Поделиться с друзьями:
Центр образования
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: