Космический исполин r136a1: звезда в 265 раз больше солнца

Cамая яркая звезда во вселенной r136a1

Взаимодействующие галактики NGC 2207 и IC 2163

В гигантских масштабах нашей расширяющейся Вселенной объекты порой разъединяют гигантские расстояния. Однако даже на безграничных космических просторах происходят различные катаклизмы. Самыми эффектными из них являются столкновения галактик.

Более крупная галактика на этом снимке — NGC 2207, меньшая — IC 2163. Приливные силы от NGC 2207 искажают форму IC 2163. Однако столкновения и взаимодействие галактик не такая страшная вещь, как кажется со стороны. Ведь галактики состоят из звезд, отделенных друг от друга гигантскими расстояниями. Сами звезды, как правило, не сталкиваются друг с другом, а лишь меняют свою траекторию.

Гравитационные силы при тесном сближении галактик способны ускорить процессы звездообразования и эволюции внутри них. В частности, может повыситься число вспышек сверхновых. Совсем недавно, 2 марта 2013 г., сверхновая была замечена в NGC 2207.

Характеристики ярчайшей звезды

Хотя звезда была открыта еще в 60-х годах прошлого века, свой титул рекордсмена она получила совсем недавно, в 2010 году. Причиной этому стало ее удаление — расстояние между R136a1 и Землей составляет 50 тысяч парсек, что равно 163 тысячам световых лет!

Поэтому не странно, что рассмотреть звезду детально сумел только телескоп «Хаббл». Ведь яркость звездного скопления R136 на звездном небе составляет всего 10 — на три пункта ниже порога видимости человеческого глаза. А чтобы увидеть саму звезду, понадобится телескоп длиной в 3,6 метра! Сразу и не подумаешь, что в таком незаметном с Земли секторе находится самая яркая во Вселенной звезда.

Звездное скопление R136. Снимок телескопа Хаббл

Но сегодня у астрономов имеются как и проработанная теоретическая база физики звезды, так и мощная аппаратура, позволяющая заглянуть в самые дальние уголки Вселенной. В итоге длительные исследования принесли немало интересной информации про R136a1 — а именно:

  • Масса R136a1 равна массе 256 Солнц — в переводе на цифры, это 5 × 1032 килограмм, или 5 000 000 000 000 000 000 000 000 000 00 тонн! Это самый высокий показатель среди открытых сегодня звезд. Масса является важным параметром для звезды — от нее зависит интенсивность термоядерного «горения» ядра, источника всей энергии светила.
  • В соответствии с большой массой, у R136a1 невероятно высокая температура поверхности — 55 тысяч градусов по Цельсию. Это почти в десять раз больше нагрева нашего светила! Так как процесс «горения» водорода внутри звезды продолжается до сих пор, накал ядра R136a1 может достигать сотен миллионов градусов Цельсия.

Зависимость цвета звезды от температуры и длины световой волны. Цвета усилены.

  • Хотя R136a1 является самой тяжелой звездой, ее размеры относительно скромные — диаметр звезды больше солнечного «всего» в 29-35 раз. Однако и этого достаточно — радиус R136a1 составляет 1/7 астрономической единицы, расстояния от Солнца до Земли. А общий объем R136a1 больше нашего светила в 22 тысячи раз!
  • Звезда относится к молодым светилам Вселенной — ее возраст астрономы оценивают в 1,7 миллиона лет.

Из-за массы, высокой светимости, накала поверхности и сильных звездных ветров, R136a1 причисляют к звездам класса Вольфа-Райе. Причислению в эту группу поспособствовал и состав светила, богатый тяжелыми элементами, особенно кислородом, углеродом и азотом. Однако R136a1 не совсем типичная звезда ВР. Большинство светил класса — это старые тяжелые звезды, в которых термоядерное «горение» перешло на гелий. А внутри R136a1 все еще длится ядерный синтез на основании водорода.

Красный карлик, звезда класса Солнца, голубой гигант и R136a1

Где найти R136a1?

Заслуживает внимание и расположение R136a1 во Вселенной. Как уже было сказано в начале статьи, она находится в звездном скоплении R136, которое прячется в туманности Тарантул

Все они находятся в Большом Магеллановом Облаке — карликовой галактике, которая вращается вокруг нашего Млечного Пути. Расстояние от Земли к туманности составляет 50 тысяч парсек — это 1,54 × 1018 километров.

Туманность Тарантул, как и все Магелланово Облако, находится в районе созвездия Золотой Рыбы. Оно принадлежит к Южному полушарию Земли, поэтому увидеть его на небе с нашей территории нельзя. И очень жаль: в туманности Тарантул находится много интересных объектов. Среди них находится красный сверхгигант WOH G64 — одна их самых больших звезд в обозримой Вселенной.

Благодаря высокой светимости, R136a1 играет значительную роль в своем секторе. Так, она создает десятую часть ионных потоков всей туманности Тарантул и составляет половину всего излучения своего звездного скопления. Для воздействия подобной силы нужно соединить энергию 70 обычных голубых звезд.

Туманность Тарантул

Экстремальная яркость

Главной особенностью R136a1 является невероятно сильная яркость — ее абсолютная светимость, по максимальным расчётам, достигает 8,7 миллиона солнечных яркостей! Большую яркость не имеет ни одна звезда в мире. За 5 секунд R136a1 выделяет столько же энергии, сколько наше Солнце излучает целый год!

В первую очередь стоит отметить, что общую яркость звезды определяют не только по спектру света, который видит человеческий глаз.

Виды и классификация

Галактика не имеет чётких границ, поэтому точно понять, где они заканчиваются, и начинается межгалактическое пространство невозможно. В самой космической системе имеются планеты, туманности, звёзды, звёздные скопления. Но они есть и вокруг систем. Учёные различают следующие формы космических систем:

  1. Эллиптическая. Эллиптический звёздный остров относятся к первому классу. Его особенностью является отсутствие рукавов, диска, центрального ядра. По большому счёту он является балджем огромного размера, состоящим из галактической сферы неправильной (вытянутой) или идеально круглой, шарообразной формы. Звёздный состав эллиптических систем включает старых красных гигантов или красных, жёлтых карликов. Массивных, активных светил в них нет или они крайне редки. В список галактик эллипсоидной формы входит М87, расположенная на расстоянии в 53,5 млн световых лет от Земли.
  2. Линзовидная. Является промежуточным звеном между спиральными и эллиптическими звёздными островами. У астрономов существует версия, что линзовидная галактика образовалась из спиральной, у которой слились рукава, а потенциал звездообразования закончился. У неё имеется массивное ядро, распластанные газовый и звёздный диски. Внешне напоминает двояковыпуклую линзу из-за контраста плоских дисков и объёмного, выступающего балджа. Состоит из старых звёзд, чёрных дыр, маленьких зрелых светил остатков сверхновых звёзд, галактической пыли. Одна из подобных космических систем под названием Веретено располагается от Земли на расстоянии в 45 млн световых лет.
  3. С перемычкой. Система округлой формы, которую посередине пересекает яркая перемычка, состоящая из звёзд и межзвёздного газа. Рукава идут от краёв этой перемычки (бара). Галактика с перемычкой очень схожа со спиральной. Основное их отличие в том, что спирали начинаются от бара, а не от ядра. Примером является NGC 1300, расположенная в 60 млн световых лет от нашей планеты.
  4. Спиральная. В классическом варианте спиральная галактика – это активно вращающийся звёздный остров в виде эллипса, в котором от балджа отходят рукава в виде закрученных спиралей. У большинства таких космических объектов есть перемычки. В рукавах активно образуются молодые звёзды из-за большого содержания там свободной видимой материи. Список галактик в виде спирали обширен. Такие системы составляют 55% от всего количества звёздных островов во Вселенной. Интересным фактом является то, что у них немного рукавов. Спираль закручивается не очень туго, звёзды свободно перемещаются из одной её части в другую. Почему рукава не закручиваются больше ещё не известно. Одной из версий является то, что спираль закручивается под влиянием волн плотности, сжимающие пылевые и газовые облака, попадающие в галактические рукава. В результате активируется образование звёзд, в основном массивных и ярких, жизненный срок которых составляет несколько миллионов лет. При этом они находятся практически всегда в фиксированном положении, что обеспечивает стабильность спиралей. Но эта гипотеза так и остаётся предположением без доказательств, потому что длительное изучение развития галактических систем невозможно из-за их сложной структуры. Самая известная галактика, относящаяся к этому типу – Млечный Путь.
  5. Неправильная. Очень редкая разновидность звёздных островков. Состоит из газа, пыли, звёздных скоплений, но в них отсутствуют основные структурные элементы, такие как балдж, рукава. По структуре и внешнему виду неправильная галактика похожа на рваные облака. Такой формой она часто обязана воздействию гравитационных полей. Но иногда приобретает рваный вид сама по себе. Интересными, с точки зрения, астрономии является карликовая неправильная галактика. Она наполнена газом – необходимым элементом для образования новых звёзд. В ней мало металлов и они очень компактные по размеру. Всё это в совокупности создаёт оптимальные условия для зарождения ярких, огромных звёзд, которые очень быстро гаснут. К неправильной системе относится NGC 4449, располагающаяся 12 млн световых лет от Земли.

Бар (перемычка) проходит от внутренних концов спиральных ветвей (голубые) к центру галактики. NGC 1300.

Планета Земля входит в Млечный Путь, это спиральная галактика с перемычкой. Включает более 150 млрд звёзд, световой луч с одной стороны Млечного Пути до другого проходит за сотню тысяч лет. Солнечная система располагается на краю нашей галактики. Расстояние от Солнца до ядра Млечного Пути составляет 30 000 световых лет.

Ярчайшие звезды созвездия Цефей

Созвездие является домом для VV Цефея и звезды-граната Мю Цефея, которые являются одними из самых больших известных звезд в Млечном Пути. Созвездие Цефей имеет одну звезду с известными планетами. Самая яркая звезда в созвездии — Альдерамин.

Звезда Альдерамин или α Цефея

Альфа Цефея — самая яркая звезда в созвездии. Это белая звезда класса А. В настоящее время эволюционирующая из звезды главной последовательности в субгигант. Она находится на расстоянии 49 световых лет от нас. Её традиционное название — Альдерамин, которое происходит от арабской фразы الذراع اليمن и  означает «правая рука». У звезды магнитуда 2,5141. Она вращается с очень высокой скоростью около 246 км/с и совершает один оборот вокруг своей оси в течение 12 часов.

Альдерамин никогда не заходит ниже горизонта, когда его наблюдают из Европы, Северной Азии, Канады и России. Звезду можно увидеть невооруженным глазом.

Звезда Альфирк или β Цефея

Бета Цефея — это тройная звезда с со светимостью от 3,15 до 3,21, в течение периода 0,1904844 дней. Она находится на расстоянии 690 световых лет.

Традиционное название звезды Альфирк происходит от арабского الفرقة, что означает «стадо овец». Альфирк служит прототипом для класса звезд, известных как переменные звезды Бета-Цефея. Эти звезды являются основными последовательными звездами с массами в диапазоне от 7 до 20 солнечных масс. Они показывают изменения яркости в результате пульсаций их поверхностей. Звезды обычно изменяют свою яркость на 0,01-0,3 величины с периодами от 0,1 до 0,6 дней.

Самый яркий компонент в системе Бета Цефея Альфирк A — это синий гигант, классифицированный как звезда класса B2IIIev. «ev» означает «спектральное излучение, которое проявляет изменчивость». Звезда медленно вращается вокруг своей оси при скорости вращения 28 км/с. 

Звезда δ Цефея

Дельта Цефея — двойная звезда с видимой величиной, изменяющейся между 3,48 и 4,37. Она находится на расстоянии 891 световых лет от Солнечной системы.

Дельта Цефея служит прототипом класса звезд, известных как переменные звезды цефеиды, или просто цефеиды. Единственная звезда, принадлежащая к этому классу, которая находится ближе к Солнечной системе — это Полярная Звезда в созвездии Малого Пса.

Более яркий компонент из двойной звезды классифицируется как желто-белый сверхгигант F-класса. Его «сосед» считается звездой класса B. Звезда имеет видимую величину 7,5.

Звезда Альраи или Гамма Цефея

Гамма Цефея имеет видимую величину 3,22 и находится на расстоянии 45 световых лет от нас. Традиционные названия этой звезды Альраи, Эр Раи и Эрраи, происходящие от арабского ар-Раи, что означает «пастух». 

Гамма Цефея классифицируется как оранжевый субгигант (спектральный тип K1III-IV) и считается, что ему 6,6 млрд лет. Звезду можно увидеть невооруженным глазом. Звезда имеет тусклого компаньона размером около 0.409 солнечных масс и считается красным карликом класса M4.

Первая подтвержденная экзопланета была обнаружена на орбите более яркого компонента в системе в 1989 году. Позже открытие было отменено из-за недостаточности доказательств, но измерения в 2002 году еще раз указали на вероятное существование планеты.

Гранатовая Звезда или μ Цефея

Мю Цефея — красный сверхгигант, находящийся на расстоянии 2 400 световых лет от нас. Она относится к спектральному классу M2Ia.

Мю Цефея имеет магнитуду 4,08 и является одной из самых ярких известных звезд. Иногда ее называют гранатовой звездой Гершеля, в честь астронома Уильяма Гершеля, который открыл планету Уран в 1781 году.

Мю Цефея — яркий сверхгигант класса М и одна из самых больших звезд, когда-либо наблюдавшихся во всей галактике. Его радиус в 1 650 раз больше радиуса Солнца, что соответствует 7,7 а.е. Если бы звезда не была затемнена межзвездной пылью, то имела бы видимую величину 1,97.

Звезда начала плавить гелий в углерод и приближается к своей последней стадии жизни. Она нестабильна и, как ожидается, взорвется как сверхновая в относительно близком будущем.

Звезда VV Цефея (HD 208816)

VV Цефея — это двойная звезда, почти такая же большая, как Гранатная Звезда. Его радиус составляет от 7,5 до 8,8 а.е. Эта звезда находится примерно в 2 400 световых лет от нас. Она имеет видимую величину 4,91.

VV Цефея состоит из красного гипергиганта и голубой звезды-компаньона. Гипергигант VV Цефея A является третьей по величине известной звездой. Он больше нашего Солнца, по разным оценкам, от 1 600 до 1 900 раз.

Как становятся звездами Вольфа-Райе?

В статье уже не раз упоминалось о том, что звезда WR — это эволюционный этап светила, к которому приходят звезды разных классов и происхождения. Посмотрим же, как именно можно стать звездой Вольфа-Райе.

Гигант однажды — гигант навсегда

Существует распространенное заблуждение о том, что звезды, в которых выгорел водород, после стадии красного гиганта незамедлительно взрываются. На самом деле, сверхновая случается сразу же только у достаточно легких звезд. Светила массивнее развиваются иначе — после того, как в них загорается гелий, — они подходят к своему пределу Роша и сбрасывают остаточную оболочку из водорода. Остается горящее ядро из гелия и тяжелых веществ, которое становится самостоятельным светилом — звездой Вольфа-Райе.

Такие звезды WR обычно создают вокруг себя яркую туманность. Ее питают отторгнутые звездой слои вместе с ежегодными выбросами вещества, интенсивность которых может превышать половину массы Солнца ежегодно. Поэтому туманности около звезд Вольфа-Райе получаются достаточно крупными — их масса порой превышает 20 солнечных.

Звезда Вольфа-Райе (белая посередине, с фиолетовой аурой) и окружающая ее туманность

По праву рождения

Некоторые светила считаются звездами Вольфа-Райе даже тогда, когда они находятся на Главной последовательности. Это сверхтяжелые и очень яркие звезды, находящиеся в левом верхнем углу диаграммы Герцшпрунга-Рассела.

Их масса порождает высокую энергию (вспомните про сочетание протон-протонного и CNO-циклов ядерного синтеза!), которая поднимает тяжелые элементы из глубин звезды и создает сильный звездный ветер. Эти звезды являются самыми массивными, так как обладают всей своей первоначальной массой и  необязательно погибают, будучи звездой Вольфа-Райе. После растраты водородного запаса они могут превратиться в голубого сверхгиганта или переродиться в другую форму звезды WR по сценарию красных гигантов, описанному выше.

Эстафета между соседями

Часто звезды Вольфа-Райе встречаются в двойных звездных системах. Это случается тогда, когда изначально одно из светил тяжелее второго — тогда звезды увлекаются в короткий, но занимательный процесс взаимообмена веществом.

Все начинается с того, что более массивная звезда в системе развивается быстрее. Когда водород в ее ядре исчерпывается. и внешние слои начинают расширяться, звезда-сосед захватывает инициативу — за каких-то 100 тысяч лет к нему притягивается больше половины вещества массивного светила. От «старшей» звезды остается только пламенеющее ядро с гелиевой поверхностью — как мы уже знаем, типичная звезда Вольфа-Райе.

Черная дыра от старшей звезды WR перетягивает вещество от соседа, превращая его в звезду Вольфа-Райе

Дальше светило WR развивается по уже описанному сценарию — быстро растрачивает свою массу и коллапсирует в нейтронную звезду или черную дыру. Возросшее гравитационное влияние позволяет вернуть «украденное» соседом — и так как водородная оболочка «младшей» звезды переходит к новообразованному объекту, она сама становится звездой Вольфа-Райе. Остатки старого светила и звездный ветер от новообразованной звезды WR создает туманность, которой движением объектов системы придается кольцеобразная форма.

Водород

Оказывается этот химический элемент самый лёгкий в мире. Кроме того, его одноатомная форма составляет примерно 87% всего состава вселенной. Помимо того, он содержится в большинстве молекулярных соединений. Даже в воде, или, к примеру, он является частью органических веществ

Вдобавок водород выступает особенно важной составляющей частью кислотно-основных реакций

Этот распространённый элемент растворим в большинстве металлах. Что интересно, водород не обладает запахом, цветом и вкусом.

Водород

В процессе изучения, учёные назвали водород горючим газом.Как только не определяли его. Например, он носил имя: рождающий воду, а затем водотворное вещество.Лишь в 1824 году ему присвоили название водород.

Во Вселенной водород входит в состав 88,6% всех атомов. Остальное в большем количестве составляет гелий. И лишь малая часть это прочие элементы.Звёзды и другие газы также в основном содержат данный распространённый элемент. Кстати, опять же он может присутствовать в виде плазмы. А в космическом пространстве он представлен в виде молекул, атомов и ионов.

Водород способен формировать молекулярные облака.

Молекулярное облако Ориона

Характеристика водорода

Это уникальный элемент, так как не имеет нейтронов. Он содержит лишь один протон и электрон. Как указывалось, это самый лёгкий газ. Чем меньше масса молекул, тем выше их скорость. На это не влияет даже температура.

Помимо всего прочего, он хорошо растворим в металлах, что влияет на его способность диффундировать через них. Иногда процесс приводит к разрушению. К примеру, взаимодействие водорода и углерода. В этом случае происходит декарбонизация.

Появление водорода

Возник во Вселенной после Большого взрыва, как и все химические элементы. Согласно общепринятой теории, в первые микросекунды после взрыва температура вселенной была выше 100 млрд градусов. При этом образовалась связь трёх кварков, что создало протон. Затем возникло ядро атома водорода. В процессе расширения температура упала, и кварки образовали протоны и нейтроны. Так, появился водород.

Связь трёх кварков

Звездный нуклеосинтез

Схема эволюции недр звезд под действием ядерных реакций

Краткая схема нуклеосинтеза в звездах — в условиях с увеличивающейся температурой и плотностью при приближении к центру звезды формируются всё более тяжелые химические элементы

После образования первых химических элементов во Вселенной началась аккумуляция вещества в плотные скопления. Это произошло по причине того, что уже даже на стадии появления реликтового излучения (400 тысяч лет после наступления Большого взрыва) во Вселенной существовали неоднородности в плотности распределения материи). Из неоднородностей возникли первые звезды и галактики. Предполагается, что первые звезды во Вселенной обладали массой около 100 масс Солнца, состояли из водорода и гелия, и жили только несколько миллионов лет. За счет большой массы в недрах этих звезд формировалась высочайшая плотность, что приводило к росту температуры до нескольких миллионов или даже миллиардов градусов.  Такие условия позволяют проходить термоядерным реакциям превращения водорода и гелия в более тяжелые элементы (вплоть до железа).

Большинство энергии, которая выделяется в звездах в термоядерных реакциях связана с двумя реакциями: протон-протон цикл и CNO-цикл. Первый вид ядерных реакций характерен для звезд небольшой массы, как наше Солнце и легче. Второй вид ядерных реакций характерен для массивных звезд. Кроме того теоретиками выделяется тройная гелиевая реакция (тройной альфа процесс, в котором три атома гелия объединяются в атом углерода) и реакция горения углерода (в ходе неё атомы углерода объединяются в атомы неона, натрия, марганца или кислорода). Эти реакции выделяют намного меньше энергии, в связи с ростом удельной энергии связи атомных ядер при приближении к железному пику.

Важно отметить, что реакции, происходящие в недрах звезд за 14.8 миллиардов лет существования нашей Вселенной сгенерировали намного меньше химических элементов (по массе), чем кратковременная реакция первичного нуклеосинтеза. Так, если масса гелия в нашей Вселенной составляет около 25%, то общая масса более тяжелых химических элементов не превысила 2% от общей массы обычного вещества во Вселенной

Удельная энергия связи ядер атомов различных химических элементов в зависимости от количества протонов (порядковый номер в периодической таблице химических элементов)

Считается, что, если у звезды массой около 25 масс нашего Солнца процесс горения водорода занимает около 7 миллионов лет, то процесс горения гелия 500 тысяч лет, углерода 600 лет, кислорода 6 месяцев, а кремния только одни сутки.  В процессе подобных реакций средняя плотность в ядре звезды вырастает с одной сотой грамма до одной тонны на каждый кубический сантиметр, а температура с нескольких миллионов до нескольких миллиардов Кельвинов. Факт того, что финальной стадией термоядерных реакций в звездах является образование железа вызван тем, что на этот элемент приходится максимум удельной энергии связи ядер атомов для различных химических элементов. В результате этого после железа в ядерных реакциях энергия не выделяется, а поглощается. Аналогично дефицит легких элементов (лития, бериллия и бора) объясняется минимумом в удельной энергии связи. По этой причине эта тройка элементов активно сгорает в термоядерных реакциях.

Теоретические расчеты говорят, что образование железа возможно только у достаточно массивных звезд, у менее массивных звезд ядерные реакции не доходят до этого элемента. Так у звезд с массой около 5 масс Солнца происходит образование только водорода, гелия и углерода. Образование гелия начинается у звезд с массой не менее 70% от массы нашего Солнца. В целом же термоядерные реакции горения водорода способны начинаться лишь у объектов с массой не меньше 8% от массы нашего Солнца (предел Кумара).

Применение элементов

Человечество научилось добывать и применять с пользой для себя химические элементы. К примеру, водород и гелий применяют во многих сферах деятельности:

  • пищевой промышленности;
  • металлургии;
  • химической промышленности;
  • нефтепереработке;
  • производстве электроники;
  • косметической промышленности;
  • геологии;
  • даже в военной сфере и др.

Как видно, эти элементы играют важную роль в жизни космоса. Более того, само наше существование напрямую зависит от них. Ежеминутно происходит рост и движение Вселенной. И несмотря на то, что они по отдельности небольшие, все вокруг основано из этих элементов. Несомненно, водород и гелий, также как другие химические элементы, уникальны и удивительны. Пожалуй, с этим невозможно поспорить.

Темное будущее самой яркой звезды

Если произвести несложные расчеты, становится ясно — за 1,7 миллиона лет своего существования R136a1 потеряла материала весом в 50 Солнц. Если так продолжится и дальше, звезда просуществует в текущем режиме еще 2 миллиона лет, ужавшись в величине до 70–80 масс Солнца.

Однако все не так просто как кажется. Ученые строят прогнозы развития звезд, базируясь на наблюдениях за Солнцем и ближайшими светилами. Стоит отметить, что предсказывать будущее развитие в астрономов получается хорошо — особенно когда это касается звезд Главной последовательности, или типичных гигантов.

Но с этот подход R136a1 не работает — столь массивная звезда является беспрецедентной в астрономии. Имеет значение не только масса, которая превышает предел при натуральном формировании звезды — то есть, при сборе материала из туманности. Сила излучения R136a1 буквально рвет ее на части. Астрономы предполагают, что R136a1 могла образоваться только впоследствии слияния двух или нескольких звезд меньших размеров — недаром скопление R136 считается очень тесным.

Сценарии смерти R136a1

Поэтому астрофизикам остается только гадать о дальнейшей эволюции звезды. Однако текущий опыт ученых позволяет сказать точно — R136a1 в конце своей жизни взорвется сверхновой. Дело в том, что любая звезда, в которой загорелся гелий и образовалось массивное ядро из углерода, кислорода и элементов потяжелее, не сможет просто отделаться от сил гравитации и превратиться в медленно охлаждающийся остов, белый карлик. Накопившейся энергии необходимо вырваться наружу.

Как уже наверняка знают наши читатели, после сверхновой светило превращается либо в нейтронную звезду, либо в черную дыру. Что из этого ждет R136a1? Так как ее ядро будет не просто углеродно-кислородным, а даже железным, она сможет стать только черной дырой — масса остатки R136a1 будет намного больше верхнего предела для нейтронной звезды. Обычно превращение в черную дыру происходит без видимого взрыва. Однако громадная R136a1 сможет выбросить наружу немало изотопа никеля 56Ni. Это вызовет вспышку громадной светимости, гиперновую — ее можно будет увидеть даже с Земли.

Гиперновая в представлении художника

К счастью, эта гиперновая произойдет на безопасном расстоянии от нас. Ибо похожая вспышка, произошедшая 450 миллионов лет назад на расстоянии 6 тысяч световых лет, уничтожила 60% живших на планете существ. Это событие известно также как ордовикско-силурийское вымирание.

Итоги повышенной светимости

Даже астроном-новичок может заметить тот факт, что уровень энергии, которая излучается, является крайне высоким. Он настолько внушителен, что приводит к разрушению значительного количества взаимодействий на физическом уровне. Это, в свою очередь, провоцирует отсутствие устойчивости R136a1. Поэтому звание наиболее тяжёлого светила будет оставаться именно за ним. И происходить всё это будет на протяжении продолжительного времени.

Представитель звёздного мира имеет сильное излучение и крайне высокую температуру. Это, в свою очередь, приводит к преодолению силы гравитации, которая сдерживает материю. В итоге формируются колоссальные звёздные ветры со скоростью до 2 500 километров в секунду. Ежегодно субъект теряет в массе порядка 0,0005 веса Солнца. Это довольно крупная цифра, которая заставляет астрономов задуматься и пересмотреть сделанные выводы.

Существенное влияние на механизм поставки энергии оказывает крупная масса и высокая мощность излучения. Дело в том, что в субъектах с большим весом, как в R136a1, от ядерной части до поверхности происходит подъём излучения посредством конвекции. Этот процесс означает перемещение горячего вещества в слои, находящиеся сверху. По аналогичному механизму происходит и кипение воды. Но так как энергетический поток крайне высок, происходит вырывание атомов азота и гелия, а также их последующее выбрасывание наружу.

Изображение R136, сделанное с помощью телескопа «Хаббл», где находиться звезда R136a1

Понравилась статья? Поделиться с друзьями:
Центр образования
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: