Большой адронный коллайдер (бак или lhc)

Какую опасность может представлять большой адронный коллайдер?

Опасения

БАК — это уникальнейший прибор, созданный человечеством, именно за счет своей мощности. Только этот ускоритель способен разгонять частицы до 99.99% скорости света. Эта его особенность породила множество страхов как у профессиональных физиков, так и у обывателей. Например, высказывалось опасение, что частицы, разогнавшись до такой большой скорости, настолько уплотнятся, что образуют микроскопическую черную дыру. А эта дыра затем поглотит всю планету.

Перед запуском машины два физика, Санчо и Вагнер, даже подали иск против организаций, стоящих за БАК. Но ЦЕРН объяснил свои расчеты при помощи теории относительно Эйнштейна, что подтверждало невозможность возникновения черной дыры, и иск отклонили. Но многие люди продолжают выступать против проведения подобных экспериментов, ведь Эйнштейн мог и ошибиться.

Стивен Хокинг на основе уже собственных теорий также опроверг опасение о том, что ускоритель может привести к поглощению планеты микроскопической черной дырой. Его довод заключался в том, что черные дыры не только поглощают материю, но и излучают ее, тем самым исходя на нет. Излучение тем интенсивнее, чем меньше объем дыры. Таким образом, маленькая черная дыра исчезнет практически мгновенно и не успеет нанести никакого вреда.

Адронный коллайдер — это не нечто, созданное исключительно человеком. В природе существует множество условий для столкновения частиц на огромнейшей скорости. Чтобы получить черную дыру, необходим прибор в миллион раз мощнее, чем самый мощный на планете ускоритель.

Почему люди боятся Большого адронного коллайдера

БАК и микроскопические черные дыры

Согласно одной из теорий, во время столкновения протонов на Большом адронном коллайдере могут появиться черные дыры. Если они окажутся стабильными и не распадутся, то попадут в центр Земли, поглотят ее материю и разрушат планету. Начало этим предположениям положил гаваец Уолтер Вагнер — он подал иск с требованием остановить строительство БАК и провести дополнительные тесты, чтобы доказать безопасность установки. После суда стали переживать и остальные. Так, группа неизвестных угрожала расправой ученым, которые работали над БАК.

Но устрашающий сценарий невозможен. То, что происходит в БАК, также происходит в природе, только в гораздо больших масштабах и на огромных мощностях. А значит, микроскопические черные дыры уже давно бы возникли. Кроме того, согласно теории относительности Эйнштейна, микроскопические черные дыры не могут возникнуть на БАК, потому что частицы, которые могли бы их образовывать, моментально распадаются.

Футурология

Черные дыры: почему они черные, как их находят и при чем здесь квазары

Анатолий Сидорин:

«Если микроскопические черные дыры найдут на Большом адронном коллайдере, это будет революция в науке. Какова их судьба? Чтобы ответить на этот вопрос, нужно вспомнить механизм Хокинга, описывающий принцип испарения черной дыры: чем меньше масса черной дыры, тем быстрее она исчезает. Микроскопическая черная дыра будет жить микроскопическое время — после появления она тут же испарится».

БАК и страпельки

Последователи другой теории предполагают, что во время работы БАК могут появиться страпельки — часть странной материи, которая состоит из странных кварков. Если эти частицы попадут в обычную материю, то начнется цепная реакция и вся планета превратится в комок странной материи, непригодный для жизни.

Осложняется все тем, что странная материя до сих пор плохо изучена и никто из ученых не может сказать, как она себя поведет (отсюда и ее название).

Однако многолетние эксперименты показали, что за все время работы БАК в нем не возникло ни одной страпельки. Найти эти части пытались и физики из Брукхейвенской национальной лаборатории в Нью-Йорке на другом коллайдере, но поиски, которые начались еще в 2000 году, на сегодняшний день не дали результатов.

БАК и магнитные монополи

Магнитные монополи — гипотетически существующие частицы с одним магнитным зарядом: либо северным, либо южным. Согласно некоторым теориям, если эти элементы действительно существуют, они могут вызвать распад протонов — одних из основных частиц материи — и, как следствие, разрушение материи и мира.

Люди опасаются, что в БАК могут производиться магнитные монополи. Но это не так: специалисты ЦЕРН доказали, что если монополи и существуют, они имеют слишком большую массу — даже для БАК. Но даже имея подходящий для ускорителя вес, они уже давно бы появились: космические лучи, попадающие в атмосферу Земли, произвели бы их намного раньше.

Футурология

Загадочные частицы: что ученые знают о космических лучах

Анатолий Сидорин:

«Мифы о Большом адронном коллайдере возникают из-за гипертрофированного антропоцентризма. Многие думают, что человек — самая мощная сила на планете, и он может уничтожить планету. На самом деле это не так.

Все ускорители, которые работают на текущий момент, производят в тысячи, если не в миллионы раз меньше событий, чем космическое излучение, падающее на Землю. Все, что делают коллайдеры, происходит со значительно большей частотой в течение всего времени существования планеты в атмосфере и на поверхности земли.

Поэтому все мифы о том, что во время работы коллайдера может возникнуть что-то, что уничтожит землю, — это просто переоценка возможностей человечества, оно не обладает такими способностями».

Уничтожит ли коллайдер Вселенную?

Вокруг БАК существует огромное количество мифов, среди которых есть и утверждение, что ускоритель способен уничтожить нашу планету или даже всю Вселенную.

Обоснование этого мифа строится на теории о том, что Вселенная, в которой мы живем, нестабильна, а столкновения на коллайдере могут породить более стабильную версию Вселенной, которая начнет разрастаться и разрушать нашу версию.

Опровергнуть подобные суждения довольно просто. Ведь во Вселенной постоянно происходят естественные процессы, которые ускоряют и сталкивают бесчисленное количество частиц с энергиями, которые на БАК просто недостижимы. И если бы существовала малейшая вероятность, что подобные столкновения приведут к «вселенской катастрофе», то это уже давно бы случилось.

Охота за неуловимым бозоном Хиггса

Как работает адронный коллайдер ускоритель? Коллайдер – это крупнейший ускоритель протонов, работающий на встречных пучках. В результате ускорения каждый из пучков будет иметь энергию в лабораторной системе 7 тераэлектрон-вольт (ТэВ), то есть 7×1012 электрон-вольт. При столкновении протонов образуется множество новых частиц, которые будут регистрироваться детекторами. После анализа вторичных частиц полученные данные помогут ответить на фундаментальные вопросы, волнующие ученых, занимающихся физикой микромира и астрофизикой. В числе главных вопросов – экспериментальное обнаружение бозона Хиггса.

Ставший «знаменитым» бозон Хиггса – гипотетическая частица, являющаяся одним из главных компонентов так называемой стандартной, классической модели элементарных частиц. Назван по имени британского теоретика Питера Хиггса, предсказавшего его существование в 1964 году. Считается, что хиггсовские бозоны, будучи квантами поля Хиггса, имеют отношение к фундаментальным вопросам физики. В частности – к концепции происхождения масс элементарных частиц.

2-4 июля 2012 ряд экспериментов на коллайдере выявили некую частицу, которую можно соотнести с бозоном Хиггса. Причем, данные подтвердились при измерении и системой ATLAS, и системой CMS. До сих пор идут споры, действительно ли открыт пресловутый бозон Хиггса, или это другая частица. Факт в том, что обнаруженный бозон – самый тяжелый из ранее фиксировавшихся. Для решения фундаментального вопроса были приглашены ведущие физики мира: Джеральд Гуральник, Карл Хаген, Франсуа Энглер и сам Питер Хиггс, теоретически обосновавший в далеком 1964 году существование бозона, названного в его честь. После анализа массива данных, участники исследования склонны считать, что бозон Хиггса действительно обнаружен.

Многие физики надеялись, что при исследовании бозона Хиггса выявятся «аномалии», которые заставили бы говорить о так называемой «Новой физике». Однако к концу 2014 года обработан почти весь массив данных, накопленный за три предыдущих года в результате экспериментов на БАК, и интригующих отклонений (за исключением отдельных случаев) не выявлено. На поверку оказалось, что двухфотонный распад пресловутого бозона Хиггса оказался, по словам исследователей, «слишком стандартным». Впрочем, намеченные на весну 2015 года эксперименты могут удивить научный мир новыми открытиями.

Частица всего

Пожалуй, одним из самых громких открытий, сделанных с помощью БАКа, является открытие бозона Хиггса. Произошло это \(4\) июля \(2012\) года на детекторе ATLAS, где была зафиксирована новая частица с массой \(126 \frac{ГэВ}{с^2} \). Питер Хиггс, предсказавший существование этого бозона еще \(50\) годами ранее, в \(2013\) году был удостоен Нобелевской премии по физике за разработку теории, объясняющую механизм получения массы веществом

Бозон Хиггса является важной частью Стандартной модели, давая ответ на один из самых фундаментальных вопросов: каким образом у частиц появляется масса. Частицы наподобие фермионов, протонов и нейтронов получают массу из-за взаимодействия с полем Хиггса, создаваемым одноименным бозоном

Большинство частиц, проходя сквозь это поле, начинают “вязнуть” и таким образом обретают массу, другие же вовсе могут находиться в поле и не иметь никакой массы.

Открытие бозона Хиггса не только объяснило взаимодействие между различными составляющими материи, но и изменило общее понимание Стандартной модели, ее развития и более подробного изучения. Приблизил ли нас бозон Хиггса к разгадке главной тайны тысячелетия или вовсе отдалил на сотни лет назад еще неизвестно. Известно одно – квантовая физика куда загадочнее, чем может казаться.

Как работает Большой адронный коллайдер?

Что такое Большой адронный коллайдер и как он работает – основные вопросы, интересующие общественность. Рассмотрим эти вопросы далее.

Коллайдер (collider) – в переводе с английского означает «тот, кто сталкивает». Задача такой установки состоит в столкновении частиц. В случае с адроннмы коллайдером, в роли частиц выступают адроны – частицы, участвующие в сильном взаимодействии. Таковыми являются протоны.

Получение протонов

Долгий путь протонов берет свое начало в дуоплазматроне – первой ступени ускорителя, куда поступает водород в виде газа. Дуоплазматрон представляет собой разрядную камеру, где через газ проводится электрический разряд. Так водород, состоящий всего из одного электрона и одного протона, теряет свой электрон. Таким образом образуется плазма – вещество, состоящее из заряженных частиц – протонов. Конечно, получить чистую протонную плазму сложно, поэтому далее образованная плазма, включающая также облако молекулярных ионов и электронов, проходит фильтрацию для выделения облака протонов. Под действием магнитов протонная плазма сбивается в пучок.

Физик Детлеф Кюхлер измеряет положение печи внутри источника ионов

Предварительный разгон частиц

Новообразованный пучок протонов начинает свой путь в линейном ускорителе LINAC 2, который представляет собой 30-тиметровое кольцо, последовательно увешенное несколькими полыми цилиндрическими электродами (проводниками). Создаваемое внутри ускорителя электростатическое поле градуировано таким образом, что частицы между полыми цилиндрами всегда испытывают ускоряющую силу в направлении следующего электрода. Не углубляясь целиком в механизм разгона протонов на данном этапе, отметим лишь, что на выходе с LINAC 2 физики получают пучок протонов с энергией 50 МэВ, которые уже достигают 31% скорости света. Примечательно, что при этом масса частиц возрастает на 5%.

Линейный ускоритель LINAC 2

К 2019-2020-му году планируется замена LINAC 2 на LINAC 4, который будет разгонять протоны до 160 МэВ.

Стоит отметить, что на коллайдере также разгоняют ионы свинца, которые позволят изучить кварк-глюонную плазму. Их разгоняют в кольце LINAC 3, аналогичном LINAC 2. В дальнейшем также планируются эксперименты с аргоном и ксеноном.

Далее пакеты протонов поступают в протон-синхронный бустер (PSB). Он состоит из четырех наложенных колец диаметром 50 метров, в которых располагаются электромагнитные резонаторы. Создаваемое ими электромагнитное поле имеет высокую напряженность, и проходящая через него частица получает ускорение в результате разности потенциалов поля. Так спустя всего 1,2 секунды частицы разгоняются в PSB до 91% скорости света и достигают энергии в 1,4 ГэВ, после чего поступают в протонный-синхротрон (PS). Диаметр PS составляет 628 метров и оснащен 27 магнитами, направляющими пучок частиц по круговой орбите. Здесь частиц протоны достигают 26 ГэВ.

Протонный-синхротрон (PS)

Предпоследним кольцом для разгона протонов служит Суперпротонный-синхротрон (SPS), длина окружности которого достигает 7 километров. Будучи оснащенным 1317-ю магнитами SPS разгоняет частицы до энергии в 450 ГэВ. Спустя примерно 20 минут пучок протонов попадает в основное кольцо – Большой адронный коллайдер (LHC).

Суперпротонный-синхротрон (SPS)

Разгон и столкновение частиц в LHC

Переходы между кольцами ускорителей происходят посредством электромагнитных полей, создаваемых мощными магнитами. Основное кольцо коллайдеро состоит из двух параллельных линий, в которых частицы движутся по кольцевой орбите в противоположном направлении. За сохранение круговой траектории частиц и направление их в точки столкновения отвечают около 10 000 магнитов, масса некоторых из них достигает 27 тонн. Во избежание перегрева магнитов используется контур гелия-4, по которому протекает примерно 96 тонн вещества при температуре -271,25 ° С (1,9 К). Протоны достигают энергии в 6,5 ТэВ (то есть энергия столкновения – 13 ТэВ), при этом их скорость на 11 км/ч меньше скорости света. Таким образом за секунду пучок протонов проходит большое кольцо коллайдера 11 000 раз. Прежде, чем произойдет столкновение частиц, они будут циркулировать по кольцу от 5 до 24 часов.

Схема ускорителей LHC

Столкновение частиц происходит в четырех точках основного кольца LHC, в которых располагаются четыре детектора: ATLAS, CMS, ALICE и LHCb.

Для чего построен коллайдер?

Современным физикам удалось разработать теоретическую модель Вселенной, объединяющую три фундаментальных взаимодействия из четырёх существующих и названную Стандартной моделью (СМ).

Однако она пока не может считаться всеобъемлющей теорией строения мира, поскольку практически неисследованной остаётся область, названная учёными теорией квантовой гравитации и описывающая гравитационное взаимодействие.

БАК

Кстати, ведущую роль в нём, согласно теории, должен играть механизм образования массы частиц, названный бозоном Хиггса.

Учёные всего мира надеются, что исследования, проводимые на БАК, позволят изучить свойства бозона Хиггса экспериментальным путём. Кроме того, немалый интерес представляет изучение кварков – так называются элементарные частицы, образующие адроны. В частности, из-за них коллайдер назвали адронным.

Практическая польза Большого адронного коллайдера и фундаментальной науки

Прежде всего, следует отметить, что фундаментальные исследования привносят вклад в фундаментальную науку. Применением же этих знаний занимается прикладная наука. Сегмент общества, не осведомленный в пользе фундаментальной науки зачастую не воспринимает открытие бозона Хиггса или создание кварк-глюонной плазмы, как нечто значимое. Связь подобных исследований с жизнью рядового человека – неочевидно. Рассмотрим краткий пример с атомной энергетикой:

В 1896-м году французский физик Антуан Анри Беккерель открыл явление радиоактивности. Долгое время считалось, что к ее промышленному использованию человечество перейдет нескоро. Всего за пять лет до запуска первого в истории ядерного реактора великий физик Эрнест Резерфорд, собственно открывший атомное ядро в 1911-м году, говорил, что атомная энергия никогда не найдет своего применения. Переосмыслить свое отношение к энергии, заключенной в ядре атома, специалистам удалось в 1939 году, когда немецкие ученые Лиза Мейтнер и Отто Ган обнаружили, что ядра урана при облучении их нейтронами делятся на две части с выделением огромного количества энергии — ядерной энергии.

И лишь после этого последнего звенья ряда фундаментальных исследований в игру вступила прикладная наука, которая на основе этих открытий изобрела устройство для получения ядерной энергии – атомный реактор. Масштаб открытия можно оценить, ознакомившись с долей выработки электроэнергии атомными реакторами. Так в Украине, например, на АЭС выпадает 56% выработки электроэнергии, а во Франции и вовсе – 76%.

Все новые технологии основываются на тех или иных фундаментальных знаниях. Приведем еще пару кратких примеров:

  • В 1895-м году Вильгельм Конрад Рентген заметил, что под действием рентгеновского излучения фотопластинка затемняется. Сегодня рентгенография – одно из наиболее применяемых исследований в медицине, позволяющая изучить состояние внутренних органов и обнаружить инфекции и опухали.
  • В 1915-м году Альберт Эйнштейн предложил свою Общую теорию относительности. Сегодня эта теория учитывается при работе GPS спутников, которые определяют местоположение объекта с точностью до пары метров. GPS применяется в сотовой связи, картографии, мониторинге транспорта, но в первую очередь – в навигации. Погрешность спутника, не учитывающего ОТО, с момента запуска росла бы на 10 километров в день! И если пешеход может воспользоваться разумом и бумажной картой, то пилоты авиалайнера попадут в затруднительную ситуацию, так как ориентироваться по облакам – невозможно.

Схема работы спутника с учетом ОТО

Если сегодня практическое применение открытиям, произошедшим на LHC еще не найдено – это не значит, что ученые «возятся на коллайдере зря». Как известно, человек разумный всегда намеревается получить максимум практического применения из имеющихся знаний, а потому знания о природе, накопленные в процессе исследования на БАК, определенно найдут свое применение, рано или поздно. Как уже было продемонстрировано выше – связь фундаментальных открытий и использующих их технологий иногда может быть совсем не очевидна.

Напоследок, отметим так называемые косвенные открытия, которые не ставятся как изначальные цели исследования. Они встречаются довольно часто, так как для совершения фундаментального открытия, обычно, требуется внедрение и использование новых технологий. Так развитие оптики получило толчок от фундаментальных исследований космоса, строящихся на наблюдениях астрономов через телескоп. В случае с ЦЕРН – так возникла повсеместно применяемая технология – Интернет, проект, предложенный Тимом Бернерсом-Ли в 1989-м году для облегчения поиска данных организации ЦЕРН.

Для чего людям нужен БАК?

Затраты на строительство БАК составили, по разным сведениям, свыше 6 млрд долларов США. Сумма становится намного более внушительной, если вспомнить ежегодные расходы на эксплуатацию установки. Для чего нужно нести столь существенные расходы, какую пользу принесёт коллайдер обычным людям?

Исследования, запланированные и уже происходящие на БАК, в перспективе могут открыть людям доступ к дешёвой энергии, которую можно будет получать буквально из воздуха. Это будет, возможно, наиболее грандиозная научно-техническая революция в истории человечества. Кроме того, разобравшись в механизме бозона Хиггса, люди, возможно, получат власть над силой, которая пока остаётся полностью неподконтрольной людям – над гравитацией. Безусловно, открытия, которые будут сделаны при помощи Большого адронного коллайдера, не позволят нам прямо завтра овладеть технологией преобразования вещества в энергию или создать антигравитационный летательный аппарат – практические результаты ожидаются лишь в отдалённом будущем. Однако эксперименты позволят сделать ещё несколько небольших шагов к пониманию сути строения Вселенной.

Словосочетание «Большой адронный коллайдер» настолько глубоко осело в массмедиа, что о данной установке знает подавляющее количество людей, в числе которых и те, чья деятельность никоим образом не связано с физикой элементарных частиц, и с наукой вообще.

Действительно, столь масштабный и дорогой проект не мог обойти стороной СМИ – кольцевая установка длиной почти в 27 километров, ценою в десяток миллиардов долларов, с которой работает несколько тысяч научных сотрудников со всего мира. Немалую лепту в популярность коллайдера внесла так называемая «частица Бога» или бозон Хиггса, который был успешно разрекламирован, и за который Питер Хиггс получил нобелевскую премию по физике в 2013-м году.

Прежде всего следует отметить, что Большой адронный коллаейдер не строился с нуля, а возник на месте своего предшественника — Большого электрон-позитронного коллайдера (Large Electron-Positron collider или LEP). Работа над 27-микилометровом тоннелем началась в 1983-м году, где в дальнейшем планировалось расположить ускоритель, который будет осуществлять столкновение электроном и позитронов. В 1988-м году кольцевой тоннель сомкнулся, при этом рабочие подошли к проведению тоннеля столь тщательно, что расхождение между двумя концами тоннеля составило всего 1 сантиметр.

Ускоритель проработал до конца 2000-го года, когда достиг своего пика – энергии в 209 ГэВ. После этого начался его демонтаж. За одиннадцать лет своей работы LEP принес физике ряд открытий, в числе которых – открытие W и Z бозонов и их дальнейшие исследования. На основе результатов этих исследований был сделан вывод о сходстве механизмов электромагнитного и слабого взаимодействий, вследствие чего начались теоретические работы по объединению этих взаимодействий в электрослабое.

В 2001-м году на месте электрон-позитронного ускорителя началась постройка Большого адронного коллайдера. Строительство нового ускорителя завершилось в конце 2007-го года. Он располагался на месте LEP – на границе между Францией и Швейцарией, в долине Женевского озера (в 15 км от Женевы), на глубине ста метров. В августе 2008-го года начались испытания коллайдера, а 10-го сентября произошел официальный запуск БАКа. Как и в случае с предыдущим ускорителем, строительство и работа с установкой возглавляется Европейской организацией по ядерным исследованиям – ЦЕРН.

Как работает Большой адронный коллайдер

Большой адронный коллайдер — это ускорительное кольцо окружностью 27 км, оборудованное огромным количеством установок, каждая из которых выполняет свою функцию. Ускорительное кольцо можно условно разделить на восемь секторов, через которые проходят пучки частиц.

Пучки частиц поступают в Большой адронный коллайдер из предварительного ускорителя SPS — протонного суперсинхротрона, который их формирует, а затем впрыскивает в специальный отсек БАК. Внутри коллайдера протоны начинают циркулировать в противоположных направлениях по двум вакуумным трубам. По мере своего движения они пролетают через следующие установки ускорительного кольца:

  • Ускорительная секция. Протонные пучки впрыскиваются в БАК на энергии 0,45 ТэВ и ускоряются до 7 ТэВ уже внутри коллайдера. С каждым новым оборотом через ускорительную секцию протоны получают дополнительную энергию.
  • Система сброса пучка. Эта установка останавливает и выводит из БАК протонный пучок, если он отклоняется от заданной траектории.
  • Чистка пучка. По мере движения протонного пучка по вакуумной трубе некоторые его частицы могут отклониться. Система очистки пучка отсекает их, не задевая основную часть пучка.
  • Детекторы. Основная задача этих установок — зафиксировать результат взаимодействия частиц и передать соответствующую информацию в цифровом виде в центр управления ЦЕРН.

Устройство БАК (на схеме обозначен как LHC — Large Hadron Collider

Анатолий Сидорин:

«Детектор — это огромное количество электроники, по сигналам которой можно отследить сорта частиц, образованные при столкновении пучков протонов, а также их параметры: энергию, направление движения и так далее.

Все данные получаются в виде потока информации — около 20 Гб в секунду. Такой объем информации просто так сохранить невозможно, поэтому есть дополнительная сортировка. Из всего объема информации, которая идет от электроники детектора, отбираются только те сигналы, по которым можно реконструировать события — возникновение частиц.

Дальше вся информация записывается на диск. Полный объем данных, поступающий с Большого адронного коллайдера, хранится в вычислительном центре ЦЕРН. Есть еще 12 центров более низкого уровня, на которых размещены резервные фрагменты этих данных, например у нас, в Дубне. То есть данные распределяются по всему миру».

Для того чтобы удерживать протонные пучки внутри ускорителя, на них необходимо воздействовать магнитным полем. Для этого на Большом адронном коллайдере установлено несколько тысяч мощных магнитов.

Один из поворотных магнитов спускают в шахту для установки на БАК

(Фото: home.cern)

Кто обслуживает Большой адронный коллайдер

Все органы управления БАК находятся в центре управления ЦЕРН. В постоянном штате примерно 1,5 тыс. человек: инженерный научный персонал, который обеспечивает работу ускорительного комплекса, сотрудники, занимающиеся развитием, ремонтом и модернизацией установки и так далее.

Другая категория сотрудников на БАК — приглашенные группы ученых, которые проводят эксперименты. Они приезжают на определенное время и изучают данные, полученные с детектора. Помимо этого, физики из других стран помогают контролировать работу БАК: выходят на смены и следят за его приборами и системами.

Большой адронный коллайдер работает круглосуточно — выключать его нельзя. Это связано с тем, что он постоянно потребляет большое количество энергии, в основном на поддержание низкой температуры. Наблюдать за коллайдером тоже нужно постоянно, поэтому сутки разделены минимум на три рабочие смены.

Понравилась статья? Поделиться с друзьями:
Центр образования
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: