Какая температура самая большая во Вселенной?
Это поразительно, но самая высокая температура во Вселенной в 10 триллионов градусов по Цельсию была получена искусственным путем на Земле. По информации ресурса DuGGeR абсолютный рекорд температуры был установлен 7 ноября 2010 года в Швейцарии при эксперименте на Большом адронном коллайдере – БАК (самом мощном в мире ускорителе элементарных частиц).
В рамках эксперимента на БАК ученые поставили задачу – получить кварк-глюонную плазму, которая заполняла Вселенную в первые мгновения ее возникновения после Большого взрыва. С этой целью на скорости, близкой к скорости света, ученые столкнули пучки ионов свинца, обладающие колоссальной энергией. При столкновении тяжелых ионов начали возникать “мини-большие взрывы” – плотные огненные сферы, имевшие столь чудовищную температуру. При таких температурах и энергиях ядра атомов буквально плавятся и образуют “бульон” из составляющих их кварков и глюонов. В результате в лабораторных условиях и была получена кварк-глюонная плазма с самой высокой температурой с момента возникновения Вселенной.
До этого ни в одном эксперименте ученым еще не удавалось получить столь немыслимо высокой температуры. Для сравнения: температура распада протонов и нейтронов составляет 2 триллиона градусов по Цельсию, температура нейтронной звезды, которая формируется сразу после взрыва сверхновой, составляет 100 миллиардов градусов.
Наше родное Солнце относится к желтым карликам и имеет температуру ядра в 50 миллионов градусов. Таким образом, температура полученной кварк-глюонной плазмы в 200 тысяч раз превысила температуру ядра Солнца. В тоже время в окружающем космосе обычно царит первозданный холод, так как средняя температура Вселенной только на 0,7 градуса выше абсолютного нуля.
Температура в космосе
Вселенная далеко не однородна. Все ядра звезд разогреты до миллиардов градусов. Однако большая часть пространства, само собой разумеется, серьёзно холодней. Если стоит вопрос о температуре в открытом космосе, то, как это ни странно, она всего лишь на 2,7 градуса выше показателя абсолютного нуля. Соответственно, его показатель будет минус 270,45 по Цельсию.
Эта разница в 2,7 градуса возникает по причине реликтового излучения, уже упоминавшегося. Однако, Вселенная распространяется, разрастается (понятие энтропии), а это говорит о том, что ее температура станет потихоньку снижаться. Чисто умозрительно говоря, спустя триллионы лет, материя и вещества в ней имеют возможность остынуть до самой минимальной отметки.
Но вопрос состоит в том, завершится ли в таком случае расширение Вселенной так называемой «тепловой смертью», или же она окажется более структурированной или разнородной из-за воздействия сил гравитации, — это и по сей день остается объектом дискуссий. В участках сосредоточения материи теплее, но ненамного.
Скопления пыли и газа, которые встречаются между звездами нашей галактики, обладают температурой в диапазоне 10−20 градусов выше отметки абсолютного нуля, иначе говоря, минус 263−253 градусов Цельсия. И лишь рядом со звездами, в центре которых происходят реакции ядерного синтеза, находится достаточно теплоты для комфортной жизни белковых форм существования.
Околоземная орбита
Теперь коснемся следующих тем, связанных с нашей главной тематикой:
- Какова температура рядом с нашей планетой?
- Нужно ли космонавтам, которые отправляются на МКС, припасать теплые вещи?
На околоземной орбите под прямыми солнечными лучами металл накаливается до 150−160 градусов Цельсия. Одновременно с этим в тени предметы остывают до минус 90−100 градусов Цельсия. По этой причине для выхода в открытый космос применяются скафандры:
- с прочной теплоизоляцией, мощными нагревателями;
- с отменно работающей системой охлаждения.
Они защищают тело человека от настолько суровых скачков температур.
Такие же экстремальные условия встречаются на плоскости Луны. На ее солнечной стороне даже жарче, чем в самое жаркое время в Сахаре. Температурная отметка там нередко превышает 120 градусов Цельсия. Однако, на несолнечной стороне она снижается предположительно до минус 170 градусов. Во время посадки на Луну американцы воспользовались скафандрами, которые имели порядка 17 слоев предохранительных материалов. Теплорегуляция обеспечивалась специально предназначенной системой трубочек, в которых циркулировала дистиллированная вода.
Прочие планеты Солнечной системы
На любой планете Солнечной системы климат зависит от наличия или отсутствия атмосферы. Атмосфера — вторая по значению причина после дальности до Солнца. Разумеется, по мере удаления от горячей звезды температура в межпланетном пространстве падает. Однако присутствие атмосферы дает возможность удержать часть тепла за счет парникового эффекта. Особенно яркой иллюстрацией данного явления могут послужить климатические характеристики Венеры.
Температура на поверхности этой планеты поднимается до 477 градусов Цельсия. За счет атмосферы Венера жарче Меркурия, находящегося по расположению ближе к Солнцу.
Изменение температуры
В состоянии термодинамического равновесия все тела, образующие систему, имеют одинаковую температуру. Измерение температуры можно произвести только косвенным путем, основываясь на зависимости от температуры таких физических свойств тел, которые можно измерить непосредственно. Применяемые для этого вещества (тела) называют термометрическими.
Пусть два теплоизолированных тела приведены в тепловой контакт. От одного тела к другому устремится поток энергии, будет происходить процесс теплопередачи. При этом считается, что тело, которое отдает тепло имеет большую температуру, чем тело к которому поток тепла устремился. Естественно, что через некоторое время поток энергии прекращается, наступает тепловое равновесие. Предполагается, что температуры тел выравниваются и устанавливается где-то в интервале между исходными значениями температур. Так, получается, что температура — некоторая метка теплового равновесия. Получается, что любая величина t, которая удовлетворяет требованиям:
- $t_1>t_2$, если поток тепла идет о первого тела ко второму;
- $t’_1=t’_2=t,\ t_1 > t > t_2$, при установлении теплового равновесия может быть принята за температуру.
При этом предполагается, что тепловое равновесие тел подчиняется закону транзитивности: если два тела находятся в равновесии с третьим, то они находятся в тепловом равновесии и между собой.
Важнейшей особенностью приведённого определение температуры является его неоднозначность. Мы по-разному можем выбрать величины, удовлетворяющие поставленным требованиям (что отразится в способах измерения температуры), и получить несовпадающие температурные шкалы. Температурные шкалы — это способы деления на части интервалов температур.
Приведем примеры. Как известно, прибор для измерения температуры — термометр. Рассмотрим два типа термометров различного устройства. В одном роль температуры тела выполняет длина ртутного столбика в капилляре термометра, в случае когда термометр находится в тепловом равновесии с телом, температуру которого мы измеряем. Длина ртутного столбика удовлетворяет условиям 1 и 2, которые приведены выше и предъявляются к температуре.
рис. 1
Существует и другой способ измерения температуры: с помощью термопары. Термопарой называют электрическую цепь с гальванометром и двумя спаями разнородных металлов (рис. 1). Один спай помещен в среду с фиксированной температурой, например тающий лед, другой в среду, температуру которой надо определить. В этом случае температурным признаком считают ЭДС термопары. Эти два способа измерения температуры не будут давать одинаковых результатов. И для того, чтобы перейти от одной температуре к другой, необходимо построить градировочную кривую, устанавливающую зависимость ЭДС термопары от длины ртутного столбика. Тогда равномерная шкала ртутного термометра преобразуется в неравномерную шкалу термопары (или наоборот). Равномерные шкалы ртутного термометра и термопары образуют две совершенно разные температурные шкалы, на которых тело в одном и том же состоянии будет иметь различные температуры. Можно взять одинаковые по устройству термометры, но с различными «термическими телами» (например, ртутью и спиртом). Их температурные шкалы также не совпадут. График зависимости длины ртутного столбика от длины спиртового столбика не будут линейными.
Отсюда следует, что понятие температуры, основанное на законах теплового равновесия, не однозначно. Такая температура называется эмпирической, она зависит от способа измерения температуры. Нуль шкалы эмпирической температуры всегда выбивается произвольно. По определению эмпирической температуры физический смысл имеет только разность температур, то есть ее изменение. Любая эмпирическая температурная шкала приводится к термодинамической температурной шкале введением поправок, учитывающих характер связи термометрического свойства с термодинамической температурой.
Какая температура самая низкая во Вселенной?
Самая высокая температура во Вселенной в 10 триллионов градусов по Цельсию была получена искусственным путем на Земле. Абсолютный рекорд был установлен в Швейцарии при эксперименте на Большом адронном коллайдере. А теперь угадайте — где во Вселенной была зафиксирована самая низкая температура? Правильно! Тоже на Земле.
В 2000 году группе ученых (из лаборатории низких температур в Технологическом университете Хельсинки) при изучении магнетизма и сверхпроводимости в редком металле Родий, удалось получить температуру всего на 0.0000000001 градуса выше абсолютного нуля (см. пресс-релиз). В настоящее время это самая низкая температура, полученная на Земле и Самая низкая температура во Вселенной.
Отметим, что абсолютный ноль — это предел всех температур или -273.15… градусов по Цельсию. Такую низкую температуру (-273.15 °C), просто невозможно достичь. Второй рекорд по снижению температуры был установлен в Массачусетском Технологическом Институте. В 2003 году там удалось получить сверх-холодный газ Натрия.
Получение сверхнизких температур, искусственным путем — выдающееся достижение. Исследования в этой области чрезвычайно важны для изучения эффекта сверхпроводимости, использование которого (в свою очередь) может вызвать настоящую индустриальную революцию.
Щелкните мышкой по любой синей панели ниже для получения дополнительной информации.
Оборудование для достижения рекордно низких температур
Оборудование для достижения рекордно низких температур, обеспечивает несколько последовательных стадий охлаждения. В центральной части криостата находится холодильник для достижении температуры 3 mK, и две атомные ступени охлаждения, использующие метод ядерного адиабатического размагничивания.
Первые атомная ступень охлаждается до температуры 50 μK, в то время как вторая атомная ступень с образцом Родия, позволила достичь рекордно низкой отрицательной температуры уже в пикокельвиновском диапазоне.
Самая низкая температура в природе
В природе самая низкая температура была зарегистрирована в туманности Бумеранг. Эта туманность расширяется и выбрасывает охлажденный газ со скоростью 500 000 км/ч. За счет огромной скорости выброса молекулы газа охладились до —271/-272 °С.
Для сравнения. Обычно, в открытом космосе температура не опускается ниже -273 °С.
Цифра в —271 °С — является самой низкой из официально зарегистрированных естественных температур. И это значит, что туманность Бумеранг холоднее даже реликтового излучения от Большого Взрыва.
Туманность Бумеранг находится относительно недалеко от Земли на расстоянии всего лишь в 5000 световых лет. В центре туманности находится умирающая звезда, которая когда-то, как и наше Солнце была желтым карликом. Затем она превратилась в красный гигант, взорвалась и закончила жизнь в виде белого карлика с гиперхолодной протопланетарной туманностью вокруг себя.
Туманность Бумеранг была детально сфотографирована космическим телескопом Хаббл в 1998 году. В 1995 году, используя 15-метровый субмиллиметровый телескоп ESO в Чили, астрономы выяснили, что именно она является самым холодным местом во Вселенной.
Самая низкая температура на Земле
Самая низкая естественная температура на Земле, —89,2 °С, была зафиксирована в 1983 в Антарктиде на Станция Восток. Это официально зарегистрированный рекорд.
Недавно ученые сделали новые замеры со спутника в районе японской станции Купол Фудзи. Получена новая рекордная цифра самой низкой температуры на поверхности Земли -91,2 °С. Однако этот рекорд сейчас оспаривается.
В тоже время поселок Оймякон в Якутии сохраняет за собой право считаться полюсом холода на нашей планете. В Оймяконе в 1938 году была зарегистрирована температура воздуха в -77,8 °С. И хотя на станции Восток в Антарктиде зафиксирована значительно более низкая температура (-89,2 °С), это достижение не может считаться рекордно низким, так как станция Восток находится на высоте 3488 метров над уровнем моря.
Для сопоставления результатов различных метеорологических наблюдений их необходимо приводить к уровню моря. Известно, что повышение над уровнем моря значительно понижает температуру. В этом случае самая низкая температура воздуха зарегистрированная на Земле оказывается в уже Оймяконе.
Самая низкая температура в Солнечной системе, —235 °С на поверхности Тритона (спутник Нептуна).
Это настолько низкая температура, что охлажденный азот, вероятно, оседает на поверхности Тритона в виде снега или инея. Таким образом, Тритон, является самым холодным местом в Солнечной системе.
Экстремальные условия космоса
Итак, по словам ученых, в открытом космосе температура равна -273,15 градусам Цельсия. Но это совершенно не значит, что все попадающие в космос объекты мгновенно обретают ту же температуру. Как и на поверхности нашей планеты, космические корабли, спутники и другие объекты могут нагреваться и охлаждаться, причем до экстремальных уровней. Но передача тепла в космосе возможна только одним способом.
Вообще, существует три способа передачи тепла:
- проводимость, которую можно наблюдать при нагревании металлического стержня — если нагреть один конец, со временем горячей станет и противоположная часть;
- конвекция, которую можно наблюдать, когда теплый воздух перемещается из одной комнаты в другую;
- излучение, когда испускаемые космическими объектами элементарные частицы вроде фотонов (частиц света), электронов и протонов объединяются, образуя движущиеся частицы.
Как вы уже догадались, в космосе объекты нагреваются под воздействием активности элементарных частиц — ведь мы уже выяснили, что температура является результатом движений молекул? Фотоны и другие элементарные частицы могут излучаться Солнцем и другими космическими объектами.
Насколько сильно и быстро будут нагреваться или охлаждаться попавшие в космос объекты, напрямую зависит от их местоположения относительно звезд и планет, размеров, формы и так далее. Например, летящий в космосе космический корабль будет буквально раскален со стороны Солнца, а его теневая сторона будет очень холодной. Чем дальше корабль находится от небесного светила — тем сильнее будет разница в степени нагрева.
При строительстве космических кораблей важно учитывать экстремальные изменения температур
Международная космическая станция постоянно находится под воздействием солнечного света. Сторона, которая обращена к Солнцу, нагревается до 260 градусов Цельсия. Теневая сторона, в свою очередь, охлаждена до 100 градусов Цельсия. Экипажу космической станции иногда приходится выходить на поверхность конструкции и подвергаться резким сменам температур. Поэтому их костюмы оснащены системой нагрева и охлаждения, благодаря которой исследователи космоса чувствуют себя относительно комфортно.
Чем дальше от Солнца расположены космические объекты, тем они холоднее. Например, температура на Плутоне, которая расположена очень далеко, равняется -240 градусам Цельсия. А самое холодное место во Вселенной расположено в туманности Бумеранг — температурный режим в этом регионе равен -272 градусам Цельсия.
В общем если вы когда-нибудь фантастическим образом окажетесь в открытом космосе, вам понадобится костюм, внутри которого температура будет регулироваться автоматически. Но резкие изменения температуры — не единственная проблема, которая будет вас поджидать. В космическом пространстве человеческое тело терпит много изменений, о которых можно почитать в этом материале.
Наследие Джеймса Дьюара
Несмотря на его значительный вклад в науку, сэр Джеймс Дьюар никогда не был удостоен Нобелевской премии. Хотя получил девять номинаций. Вместо этого научная добыча досталась людям, которые основывались на его работе. Например, лорд Рэлей и сэр Уильям Рамзи использовали жидкий водород Дьюара в качестве инструмента для открытия элементов ксенон, неон и криптон, и они получили премию 1904 года по химии.
Дьюар никогда не уходил на пенсию и занимал должность профессора химии в Королевском институте до своей смерти 27 марта 1923 года. Большинство ученых сегодня все еще называют эти сосуды “Дьюарами” в его честь.
В 1937 году исследователи Петр Капица и Джон Ф. Аллен впервые официально наблюдали и описывали странное сверхтекучее состояние жидкого гелия. Они обнаружили, что при охлаждении жидкого гелия ниже лямбда-точки жидкость внезапно становится, устрашающе неподвижной. И приобретает странные свойства. Отдельные атомы гелия сливаются друг с другом и становятся единым “суператомом”. Также известным как частичная конденсация Бозе-Эйнштейна (БЭК).
Степень — нагретость — тело
Температура количественно характеризует степень нагретости тела. Согласно молекулярно-кинетической теории вещества степень нагретости тела зависит от скорости поступательного движения молекул.
Температура, характеризуя степень нагретости тел, является одной из важнейших величин в современной науке.
Температура — это степень нагретости тела; измеряется в градусах. Температура кипения воды при нормальном атмосферном давлении является постоянной и условно принята равной 100 С. Температура таяния льда, которая при нормальном атмосферном давлении также постоянна, принята за 0 С. Температура ниже 0 С считается отрицательной, выше 0 С — положительной.
Для количественного выражения степени нагретости тел в практике широко используется свойство расширения тел при нагревании. В жидкостном термометре расширение жидкости, заключенной в стеклянный сосуд с тонкой трубкой, измеряется по шкале, прикрепленной к тонкой стеклянной трубке с жидкостью.
Температура является мерой степени нагретости тела. Знак разности температур двух неодинаково нагретых тел определяет направление передачи тепла.
Известно также, что степень нагретости тела ( его температура) характеризуется скоростью движения молекул вещества. Чем выше тело нагрето, тем больше у него скорость движения молекул, с тем большим напором электроны стремятся к перемещению в межмолекулярном пространстве.
Температура обычно определяется как степень нагретости тела. Но такое определение не вскрывает полностью содержания этого понятия.
Известно также, что степень нагретости тела ( его температура) характеризуется скоростью движения молекул вещества. Чем выше тело нагрето, тем больше у него скорость движения молекул, с тем большим напором электроны стремятся к перемещению в межмолекулярном пространстве.
Температурой называют величину, характеризующую степень нагретости тела.
Понятие о температуре как о степени нагретости тел основано на представлении о переходе тепла от одного тела к другому при наличии разности температур и о тепловом равновесии при равенстве температур.
Термометры расширения образует резервуар ДЛЯ ЖИДКО. |
Приборы для измерения температуры — степени нагретости тела — называются термометрами. Принцип действия термометров основан на тепловом обмене между телами с различной степенью нагретости, а также на изменении физических свойств при нагревании. Наиболее широко используются происходящие при колебаниях температуры изменения: размеров тел ( тепловое расширение); давления газов, паров и жидкостей; электрического сопротивления проводников; термоэлектродвижущей силы; энергии излучения раскаленных тел.
Жидкостные стеклянные термометры. |
Приборы для измерения температуры — степени нагретости тела — называются термометрами. По принципу действия они подразделяются на термометры расширения ( технические стеклянные, манометрические, дилатометрические, биметаллические), термоэлектрические пирометры и термометры сопротивления.
Температурой называется физическая величина, характеризующая степень нагретости тела. Понятие о температуре вытекает из следующего утверждения: если две системы находятся в тепловом контакте, то в случае неравенства их температур они будут обмениваться теплотой друг с другом, если же их температуры равны, то теплообмена не будет.
Температура. Тепловое равновесие. Абсолютная шкала температур. Молекулярная физика
- Подробности
- Обновлено 07.10.2018 21:52
- Просмотров: 937
Температура — это просто!
Температура
Температура — это мера средней кинетической энергии молекул.
Температура характеризует степень нагретости тел.
Прибор для измерения температуры — термометр.Принцип действия термометра:
При измерении температуры используется зависимость изменения какого-либо макроскопического параметра (объема, давления, электрического сопротивления и т.д.) вещества от температуры.
В жидкостных термометрах — это изменение объема жидкости.
При контакте двух сред происходит передача энергии от более нагретой среды менее нагретой.
В процессе измерения температура тела и термометра приходят в состояние теплового равновесия.
Жидкостные термометры
На практике часто используются жидкостные термометры: ртутные (в диапазоне от -35oС до +750oС) и спиртовые (от -80oС до +70oС).
В них используется свойство жидкости изменять свой объем при изменении температуры.
Однако, у каждой жидкости существуют свои особенности изменения объема (расширения) при различных температурах.
В результате сравнения, например, показаний ртутного и спиртового термометров, точное совпадение будет только лишь в двух точках (при температурах 0oС и 100oС).
Этих недостатков лишены газовые термометры.
Газовые термометры
Первый газовый термометр был создан французским физиком Ж. Шарлем.
Преимущества газового термометра:
— используется линейная зависимость изменения объема или давления газа от температуры, которая справедлива для всех газов
— точность измерения от 0,003oС до 0,02oС
— интервал температур от -271oС до +1027oС.
Тепловое равновесие
При соприкосновении двух тел различной температуры происходит передача внутренней энергии от более нагретого тела менее нагретому, и температуры обоих тел выравниваются.
Наступает состояние теплового равновесия, при котором все макропараметры (объем, давление, температура) обоих тел остаются в дальнейшем неизменными при неизменных внешних условиях. Тепловым равновесием называется такое состояние, при котором все макроскопические параметры остаются неизменными сколь угодно долго.
Состояние теплового равновесия системы тел характеризуется температурой: все тела системы, находящиеся друг с другом в тепловом равновесии, имеют одну и ту же температуру.
Установлено, что при тепловом равновесии средние кинетические энергии поступательного движения молекул всех газов одинаковы, т.е.
Для разреженных (идеальных) газов величина
и зависит только от температуры, тогда
где k — постоянная Больцмана
Эта зависимость дает возможность ввести новую температурную шкалу абсолютную шкалу температур, не зависящую от вещества, используемого для измерения температуры.
Абсолютная шкала температур
— введена английским физиком У. Кельвином
— нет отрицательных температур
Единица абсолютной температуры в СИ: = 1K (Кельвин)
Нулевая температура абсолютной шкалы — это абсолютный ноль ( 0К = -273oС ), самая низкая температура в природе. В настоящее время достигнута самая низкая температура — 0,0001К.
По величине 1К равен 1oC.
Связь абсолютной шкалы со шкалой Цельсия
Запомни! В формулах абсолютная температура обозначается буквой «Т», а температура по шкале Цельсия буквой «t».
После введения абсолютной температуры получаем новые выражения для формул:
Средняя кинетическая энергия поступательного движения молекул
Давление газа — основное уравнение МКТ
Средняя квадратичная скорость молекул
И как следствие, закон Авогадро:
В равных объемах газов при одинаковых температурах и давлениях содержится одинаковое число молекул.Заметьте, здесь концентрация молекул также одинакова!
Следующая страница «Идеальный газ. Основное уравнение МКТ»
Назад в раздел «10-11 класс»
Молекулярная физика. Термодинамика — Класс!ная физика
Основные положения МКТ. Масса и размер молекул. Количество вещества. —
Взаимодействие молекул. Строение твердых тел, жидкостей и газов. —
Идеальный газ. Основное уравнение МКТ. —
Температура. Тепловое равновесие. Абсолютная шкала температур. —
Уравнение состояния идеального газа. —
Изопроцессы. Газовые законы. —
Взаимные превращения жидкостей и газов. Влажность воздуха. —
Твердые тела. Кристаллические тела. Аморфные тела.